

NIEM NDR Draft Version 1.2 Page 1 of 126
August 7, 2007

National Information Exchange Model 1

Naming and Design Rules 2

Draft Version 1.2 3

August 7, 2007 4

Editors: 5

 Webb Roberts, Georgia Tech Research Institute 6

 Susan Liebeskind, Georgia Tech Research Institute 7

 Mark Kindl, Georgia Tech Research Institute 8

Abstract: 9

 This document specifies the data model, XML components, and XML data for use 10
with the National Information Exchange Model (NIEM) version 2.0. 11

Status: 12

 This document is a draft specification for NIEM-conformant XML components. It 13
represents the design that has evolved from the collaborative work of the NIEM 14
Business and Technical Architecture Committees (NBAC and NTAC) and their 15
predecessors. 16

 This specification is a product of the NIEM Program Management Office (PMO), 17
but has NOT been officially approved by either the PMO or the NIEM governance 18
committees (NBAC and NTAC). The PMO has recommended that this document 19
be published for public review at the same time the PMO, NBAC, and NTAC are 20
reviewing it. 21

 Send comments on this specification via email to 22
niem-comments@lists.gatech.edu. 23

mailto:niem-comments@lists.gatech.edu�

NIEM NDR Draft Version 1.2 Page 2 of 126
August 7, 2007

Table of Contents 24
1. Introduction 4 25

1.1. Scope 4 26
1.2. Audience 5 27
1.3. Document Conventions 5 28
1.4. Terminology 6 29
1.5. Document Organization 7 30

2. The NIEM Conceptual Model 9 31
2.1. NIEM Data Objects 9 32
2.2. NIEM Data Assertions 10 33
2.3. NIEM Data Model Explicit Not Implicit 10 34
2.4. NIEM Data Model Implementation in XML Schema 11 35

3. Guiding Principles 13 36
3.1. Specification Guidelines 13 37
3.2. XML Schema Design Guidelines 13 38
3.3. Modeling Design Guidelines 16 39
3.4. Implementation Guidelines 16 40

4. Relation to Standards 19 41
4.1. XML 1.0 19 42
4.2. XML Namespaces 19 43
4.3. XML Schema 19 44
4.4. ISO 11179, Part 4 19 45
4.5. ISO 11179, Part 5 21 46

5. XML Schema Design Rules 23 47
5.1. Restrictions on XML Schema Constructs 23 48
5.2. xsd:schema Document Element 30 49
5.3. Namespace Imports 31 50
5.4. Annotations 34 51
5.5. Type Definitions 36 52
5.6. Additional Definitions And Declarations 38 53

6. Modeling Rules 40 54
6.1. xsd:schema Document Element Restrictions 40 55
6.2. Annotations 41 56
6.3. Complex Type Definitions 48 57
6.4. Component Usage 54 58
6.5. NIEM Structural Facilities 55 59
6.6. Using External Schemas 58 60
6.7. Container Elements 61 61

7. XML Instance Rules 63 62
7.1. Instance Validation 63 63
7.2. Instance Meaning 63 64
7.3. Component Representation 64 65
7.4. Component Ordering 65 66
7.5. Instance Metadata 66 67

NIEM NDR Draft Version 1.2 Page 3 of 126
August 7, 2007

8. Naming Rules 68 68
8.1. Extension of XSD Namespace Simple Types 68 69
8.2. Usage of English 68 70
8.3. Characters in Names 68 71
8.4. Character Case 69 72
8.5. Use of Acronyms and Abbreviations 69 73
8.6. Word Forms 70 74
8.7. Name Generation 71 75
8.8. Object Class Term 71 76
8.9. Property Term 72 77
8.10. Qualifier Terms 72 78
8.11. Representation Term 72 79
8.12. NIEM Type Names 75 80
8.13. NIEM Property Names 76 81

Appendix A. NIEM Overview 79 82
Appendix B. NIEM Design Principles 81 83
Appendix C. NIEM Rules 83 84
Appendix D. Name Syntax for Special Components 100 85
Appendix E. Representation Terms 101 86
Appendix F. Documentation Standard Opening Phrases 103 87
Appendix G. NIEM Core Abbreviations 104 88
Appendix H. Supporting Schemas 105 89
Appendix I. References 121 90
Appendix J. Glossary 123 91
Appendix K. Notices 126 92

 93

NIEM NDR Draft Version 1.2 Page 4 of 126
August 7, 2007

1. Introduction 94

This Naming and Design Rules (NDR) document specifies schemas for use with the 95
National Information Exchange Model (NIEM). The NIEM is an information sharing 96
framework based on the World Wide Web Consortium (W3C) eXtensible Markup 97
Language (XML) Schema standard. In February 2005, the U.S. Departments of Justice 98
(DoJ) and Homeland Security (DHS) signed a cooperative agreement to jointly develop 99
the NIEM by leveraging and expanding the Global Justice XML Data Model (GJXDM) into 100
multiple domains. The NIEM is a result of a combined government and industry effort to 101
improve information interoperability and exchange within the U.S. at federal, state, tribal, 102
and local levels of government. 103

NIEM specifies a set of reusable information components for defining standard 104
information exchange messages, transactions, and documents on a large scale: across 105
multiple communities of interest and lines of business. These reusable components are 106
rendered in XML schemas as type, element and attribute definitions that comply with the 107
W3C XML Schema specification. The resulting reference schemas are available to 108
government practitioners and developers at http://niem.gov/. 109

The W3C XML Schema standard enables information interoperability and sharing by 110
providing a common language for describing data precisely. The constructs it defines are 111
basic metadata building blocks – baseline data types and structural components. Users 112
employ these building blocks to describe their own domain-oriented data semantics and 113
structures. Rules that profile allowable XML Schema constructs and describe how to use 114
them help ensure that those components are consistent and reusable. 115

This document specifies principles and enforceable rules for NIEM data components and 116
schemas. Schemas and components that obey the rules set forth here are considered to 117
be NIEM-conformant. 118

1.1. Scope 119

This document is a specification for NIEM 2.0. It is not intended to specify beyond the 120
NIEM 2.0 release. The document covers the following issues in depth: 121

• The underlying NIEM data model 122

• Guiding principles behind the design of NIEM 123

• Rules for using XML Schema constructs in NIEM 124

• Rules for modeling and structuring NIEM-conformant schemas 125

• Rules for creating NIEM-conformant instances 126

• Rules for naming NIEM components 127

This document does NOT address the following: 128

• A formal definition of the NIEM data model. 129

 Such a definition would focus on the Resource Definition Framework (RDF) and 130
concepts not strictly required for interoperability. This document instead focuses 131
on definition of schemas that work with the data model, to ensure translatability 132
and interoperability. 133

• A detailed discussion of NIEM architecture and schema versioning. 134

 Such rules will be addressed in [ARCH]. 135

• The artifacts of the NIEM information exchange process. 136

 The artifacts of the NIEM information exchange process are discussed in [IEPD]. 137

NIEM NDR Draft Version 1.2 Page 5 of 126
August 7, 2007

This document is intended as a technical specification. It is not intended to be a tutorial or 138
a user guide. A brief NIEM Overview is provided in Appendix A. 139

1.2. Audience 140

This document is targeted at government practitioners and developers who employ XML 141
for information exchange and interoperability. Such information exchanges may be 142
between organizations or within organizations. The NIEM reference schemas provide 143
system implementers much content on which to build specific exchanges. However, 144
there is a need for extended and additional content. The purpose of this document is to 145
define the rules for such new content so that it will be consistent with the NIEM reference 146
schemas. These rules are intended to establish and, more importantly, enforce a degree 147
of standardization on a national level. 148

1.3. Document Conventions 149

This document uses formatting and syntactic conventions to clarify meaning and avoid 150
ambiguity. 151

1.3.1. Document References 152

This document relies on references to many outside documents. Such references are 153
noted by bold, bracketed inline terms. For example, a reference to RFC 2119 is shown 154
as [RFC2119]. All reference documents are recorded in Appendix I, References. 155

1.3.2. Normative and Informative Content 156

This document includes a variety of content. Some content is normative (binding and 157
enforceable in implementations), while other content is informative (explanatory, but not 158
part of the NIEM specification). In general, the informative material appears as 159
supporting text and specific rationales for the normative material. 160

Conventions used within this document include: 161

[Definition: <term>] 162

 A formal definition of a term associated with NIEM. 163

 Definitions are normative. 164

[Principle <number>] 165

 A guiding principle for NIEM. 166

 The principles represent the requirements, concepts, and goals that have helped 167
shape the NIEM. Principles are informative, not normative, but act as the basis 168
on which the rules are defined. 169

 Principles are accompanied by a short discussion section that justifies the 170
application of the principle to NIEM design. 171

[Rule <section>-<number>] 172

 An enforceable rule for NIEM. 173

 Rules state specific requirements on artifacts, such as schemas and instances. 174
Most rules apply to conformant schemas while others apply to instances. The 175
rules are normative. 176

 Rules are stated using both XML InfoSet terminology (elements and attributes) 177
and XML Schema terminology (schema components). The choice of terminology 178
is driven by which standard best expresses the rule. Certain concepts are more 179
clearly expressed using XML InfoSet information items, others using the XML 180

NIEM NDR Draft Version 1.2 Page 6 of 126
August 7, 2007

Schema data model, and still others are best expressed using a combination of 181
terminology drawn from both standards. 182

 Rules have rationales which justify the need for the rule. For clarity, there may be 183
multiple rules which have the same rationale. 184

 Rules and supporting text may use Extended Backus-Naur Form (EBNF) 185
notation as defined by [XML]. 186

 Rules are numbered according to the section in which they appear, and the order 187
in which they appear within that section. For example, [Rule 4-1] is the first rule 188
in Section 4. Rule identifiers that are deleted or re-categorized will not be reused 189
until a major release milestone is reached, at which point all identifiers may be 190
reset. 191

1.3.3. Formatting 192

In addition to special formatting for definitions, principles and rules, this document uses 193
consistent formatting to identify NIEM components. 194

Courier: All words appearing in Courier font are values, objects, keywords, or literal 195
XML text. 196

Italics: All words appearing in italics, when not titles or used for emphasis, are special 197
terms with definitions appearing in this document. 198

Keywords: Keywords reflect concepts or constructs expressed in the language of their 199
source standard. Keywords have been given an identifying prefix to reflect their source. 200
The following prefixes are used: 201

• xsd: identifies keywords from the W3C XML Schema Definition Language 202
specification. 203

• xsi: identifies keywords from the W3C XML Schema's XML Schema Instance 204
specification. 205

• structures: identifies keywords from the NIEM structures namespace. 206

• appinfo: identifies keywords the NIEM appinfo namespace. 207

Throughout the document, fragments of XML schema or XML instances are used to 208
clarify a principle, or rule. These fragments are specially formatted in Courier font, and 209
appear in text boxes. An example of such a fragment would appear like this: 210

<xsd:complexType name="PersonType"> 211
 ... 212
</xsd:complexType> 213

1.4. Terminology 214

This document uses standard terminology to explain the principles and rules that 215
describe NIEM. 216

1.4.1. RFC 2119 Terminology 217

Within normative content (rules and definitions), the key words MUST, MUST NOT, 218
REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, 219
and OPTIONAL in this document are to be interpreted as described in [RFC2119] 220

. 221

NIEM NDR Draft Version 1.2 Page 7 of 126
August 7, 2007

1.4.2. XML Information Set Terminology 222

This document uses the concepts of element information items (“element”) and attribute 223
information items (“attribute”) and their associated properties as defined by [XMLInfoSet] 224
with clarifications as discussed below. Note that in the clarification that follows, the 225
abstract property names appear in square brackets relative to the information item to 226
which they belong. For example, “Element[parent]” discusses the abstract property 227
“parent” of the element information item. 228

• parent of an element (Element[parent]) 229

 child of an element (Element[children]) 230

 Note that the InfoSet properties “Element[parent]” and “Element[children]” 231
correspond to a direct, immediate relationship with an element. Children of an 232
element, and their children, and so on, will be collectively referred to as 233
"descendants" of that element. Parents of an element and their parents, and so 234
on, will be collectively referred to as “ancestors” of that element. 235

• element owning an attribute (Attribute[owner element]) 236

 The owner of an attribute is the element that possesses or contains the attribute. 237

The use of the term "document element" from [XMLInfoSet], to describe the root of all 238
elements in an XML document, is preferred over the informal and non-standard term "root 239
element." 240

1.4.3. XML Schema Terminology 241

The terms “W3C XML Schema”, “XML Schema” (upper case “Schema”) and “XSD” all 242
refer to the XML Schema specification, Parts 1 and 2 of the W3C XML Schema Definition 243
Language (XSD) Recommendations ([XMLSchemaStructures] and 244
[XMLSchemaDatatypes]). 245

The term “XML schema” (lower case “schema”) refers to specific XML schema 246
documents that conform to the XML Schema specifications listed above. 247

The term “XML instance” refers to an XML instance document, which is defined by and 248
validates to a particular XML schema. 249

The term "schema component" is defined in [XMLSchemaStructures] as a building 250
block for XML Schema. This document refers to, rather than restates, the definitions to 251
the different schema components associated with the XML Schema Abstract Data Model, 252
which are defined in the XML Schema specification. In this document, the name of the 253
referenced schema component may appear without the suffix “schema component” (i.e. 254
the term “complex type definition” is used instead of “complex type definition schema 255
component”), to enhance readability of the text. 256

The term “NCName” is defined in [XMLSchemaDatatypes], and refers to XML “non-257
colonized” names, i.e., XML name strings that do not contain the “:” character. 258

1.4.4. XML Namespace Terminology 259

This document uses the concept of an “XML Namespaces” as defined by 260
[XMLNamespaces] and [XMLNamespacesErrata]. 261

1.5. Document Organization 262

This remainder of this document is organized into sections as follows: 263

• The NIEM Conceptual Model discusses the underlying semantic model for NIEM. 264

NIEM NDR Draft Version 1.2 Page 8 of 126
August 7, 2007

• Guiding Principles discusses the principles which serve as the foundation and 265
guidelines for the rules. 266

• Relation to Standards discusses the use of the key standards used in the 267
development of NIEM. 268

• XML Schema Design Rules discusses the rules for using XML Schema 269
constructs in NIEM-conformant schemas. 270

• Modeling Rules discusses the rules for additional structure and constraints 271
needed to build NIEM-conformant schemas. 272

• XML Instance Rules discusses the rules for NIEM-conformant XML instance 273
documents. 274

• Naming Rules discusses the rules used in naming NIEM-conformant data 275
components. 276

NOTE: The ordering of the sections is intended to minimize the number of forward 277
references in the document. For this reason, the naming rules appear as the last section 278
of the document, so that the concepts being named have already been discussed. 279

This document also contains appendices of reference material as follows: 280

• A brief, non-normative overview of NIEM. 281

• A listing of all design principles, for reference purposes. 282

• A listing of all rules, for reference purposes. 283

• A table summarizing the NIEM names syntax for special NIEM components. 284

• Tables that appear in the body of this document, repeated for reference 285
purposes. 286

• Discussion and full listings of the NIEM 2.0 supporting schemas (structures 287
and appinfo). 288

• An itemized listing of the NIEM 2.0 reference schemas. 289

• A listing of high level design guidelines. 290

• A listing of modeling guidelines for harmonization. 291

• References to external standard documents. 292

 A glossary of all the normative definitions found throughout this document, for 293
reference purposes. 294

 295

NIEM NDR Draft Version 1.2 Page 9 of 126
August 7, 2007

2. The NIEM Conceptual Model 296

The NIEM provides a concrete semantic model, leveraging concepts from XML Schema, 297
RDF and the ISO/IEC Standard 11179 Metadata Registries. This semantic model 298
underlies all NIEM-conformant schemas, as well as NIEM-conformant instance data. 299
XML data that follows the rules of NIEM imply specific meaning. The XML Schema 300
components used in NIEM are selected to clarify the meaning of XML data. 301

NIEM provides a framework, within which XML data may be understood to have specific 302
meaning. In general, one limitation of XML is that it does not describe the meaning of an 303
XML document. NIEM adds to the XML specification a guide to determining the meaning 304
of any given document. 305

The goal of this section is to clarify the meaning of XML data conformant to NIEM, and to 306
outline the implications of various modeling constructs in NIEM. The NIEM follows, at a 307
high level, the RDF conceptual model [RDFConcepts], as outlined in this section. 308

The rules for NIEM-conformant schemas and instances are in place to ensure that a 309
specific meaning can be derived from data. That is, the data makes specific assertions, 310
and those assertions are well-understood, since they are derived from the rules for NIEM. 311

The key concepts underpinning the NIEM Conceptual Model are discussed in the 312
remainder of this section: 313

• NIEM Data Objects 314

• NIEM Data Assertions 315

• NIEM Data Model Explicit Not Implicit 316

• NIEM Data Model Implementation in XML Schema 317

2.1. NIEM Data Objects 318

In NIEM, an exchange is generally ad-hoc. That is, a message may be generated 319
without any persistence. It exists only for the purpose of exchange, and may not have 320
any universal meaning beyond the specific exchange. As such, a message may or may 321
not have a URI as an identifier. NIEM was designed with the assumption that a given 322
exchange may not have any unique identifier. This differs from RDF, in which all entities 323
(other than literal values) are identified by globally-meaningful URIs. 324

In NIEM, an object (data instance) is assumed to not be identified by a URI. This differs 325
from RDF, where each data object is identified by its URI. In NIEM, there is not 326
necessarily a universal, unique identifier for any given data object. 327

A NIEM-conformant instance uses XML IDs to identify objects within an XML document, 328
The NIEM XML ID is an attribute structures:id, of type xsd:ID. These IDs are not 329
assumed by NIEM to have any universal significance; they need only be unique within 330
the XML document. The use of an ID is required only when an object must be referenced 331
within the document. NIEM recognizes no correlation between these local IDs and any 332
URI. 333

Any given implementation, message, or IEPD may be defined to apply a URI or other 334
universally-meaningful identifier to an object or message. However, NIEM has no such 335
requirement. 336

Objects are instances of classes, in an object-oriented design sense. In RDF, such 337
classes are described by types, which is also how NIEM refers to them. In RDF, a 338
schema describes these classes. NIEM represents classes with type definition 339
definitions: complex type definitions and simple type definitions. 340

NIEM NDR Draft Version 1.2 Page 10 of 126
August 7, 2007

Data describes characteristics of objects and relationships between objects. In RDF, 341
these characteristics and relationships are called properties of objects, which is also 342
how NIEM refers to them. NIEM represents properties with element declarations and 343
attribute declarations. 344

Within data, an instance of a property has several characteristics. The terminology 345
comes from RDF, and is similar to the words describing the relationship of a verb to 346
nouns in a sentence: a verb has a subject and an object. 347

• The property itself: What relationship is being asserted? For example, the 348
property may say that there are brothers, or that someone has hair of a particular 349
color. 350

• The subject: About what object is the property being asserted? This would be 351
the person that has the brother, or the person whose hair is being described. 352

• The object: What is the value of the property, or to what other object does the 353
relationship exist? This would be the person that is the brother of the subject, or 354
person whose hair has the color brown. 355

A property relates two objects. Data will describe an object having a characteristic with a 356
specific value, or will describe an object with a particular relationship to another object. 357
All properties are pair-wise: between two objects, or between an object and a value. 358

In theory, any relationship that involves more than two objects may be modeled as a set 359
of binary properties. In NIEM, such relationships may be expressed either as a set of 360
properties (i.e. as element and attribute declarations) or as a complex type definition. 361

2.2. NIEM Data Assertions 362

Data consists of assertions about objects. These assertions are categorized as follows: 363

• Assertions that objects exist 364

 Any reference to a data object asserts that the object exists. For example, XML 365
data about a person says that the person exists. 366

• Assertions that objects have characteristics 367

 Any reference to some characteristic of the object. For example, XML data about 368
a person with the name "John" asserts that a person has a characteristic called 369
“name” and the characteristic has a value of “John.” 370

• Assertions that objects participate in relationships 371

 Any reference to relationship from one object to one or more objects. For 372
example, XML data about a person may contain a characteristic which represents 373
a “brother” relationship. The value of that characteristic refers to another object 374
that is considered to be a person. The XML data associated with the person 375
assert that there is a person, that the person is in a relationship with another 376
person, and that these two people are brothers. 377

2.3. NIEM Data Model Explicit Not Implicit 378

In NIEM data, that which is not stated is not implied. If data says a person's name is 379
"John", it is not implicitly saying that he doesn't have other names, or that “John” is his 380
legal name, or that he is different from a person known as “Bob.” The only assertion 381
being made is that one of the names by which this person is known is "John". 382

This is one reason that definitions of NIEM content are so important. The definitions must 383
state exactly what is implied by any given statement. The concept of "legal name" may 384
be defined that makes additional assertions about a name of a person. Such assertions 385
must be made explicit in the definition of the relationship. 386

NIEM NDR Draft Version 1.2 Page 11 of 126
August 7, 2007

2.4. NIEM Data Model Implementation in XML 387

Schema 388

NIEM defines rules for XML schemas which enforce the NIEM conceptual model. The 389
schemas which follow these rules are referred to as NIEM-conformant schemas. 390

As discussed above, NIEM classes and properties are mapped onto XML Schema 391
components. The following is an example of how a NIEM class for “Person” is rendered 392
as an XML Schema complex type definition: 393

Conceptual class rendered as XML Schema complex type 394

<xsd:complexType name="PersonType"> 395
 ... 396
</xsd:complexType> 397

The following is an example of how a NIEM property for “ImageOperator” is rendered as 398
an element declaration: 399

Conceptual property rendered as element declaration 400

<xsd:element name="ImageOperator" type="nc:PersonType" nillable="true"> 401
 ... 402
</xsd:element> 403

NIEM also defines rules for XML documents which enforce the NIEM conceptual model. 404
XML data is called a NIEM-conformant instance if it follows the rules specified by the 405
NIEM-conformant schema, as well as additional rules that are NIEM-specific. For 406
example, in a NIEM-conformant instance, XML IDREFs must refer to XML IDs defined on 407
objects of appropriate type. If this is not the case, the data may be valid according to the 408
XML schema, but will not be NIEM-conformant. 409

Sample fragment of NIEM-conformant data 410

<nc:Person> 411
 <nc:PersonHairColorCode>BRN</nc:PersonHairColorCode> 412
</nc:Person> 413

Based on an element declaration from NIEM Core, the following example illustrates a 414
valid XML instance that does not conform to NIEM. Per the 415
appinfo:ReferenceTarget element in the schema declaration, 416
nc:ActivityReference may ONLY refer to an nc:ActivityType. However, within 417
the instance, my:ActivityList/nc:ActivityReference refers to “Bill”, which is an 418
nc:PersonType. 419

NIEM NDR Draft Version 1.2 Page 12 of 126
August 7, 2007

Schema declaration for element nc:ActivityReference 420

<xsd:element name="ActivityReference" type="structures:ReferenceType"> 421
 <xsd:annotation> 422
 <xsd:documentation> 423
 A single or set of related actions, events, or process steps. 424
 </xsd:documentation> 425
 <xsd:appinfo> 426
 <appinfo:ReferenceTarget appinfo:name="ActivityType"/> 427
 </xsd:appinfo> 428
 </xsd:annotation> 429
</xsd:element 430

Valid instance for above schema that does NOT conform to NIEM rules 431

<nc:Person structures:id=”Bill”> 432
 <nc:PersonFullName>William Tell</nc:PersonFullName> 433
 <nc:PersonSexCode>M</nc:PersonSexCode> 434
</nc:Person> 435
 436
<nc:Activity structures:id=”Pie”> 437
 <nc:ActivityDescriptionText> 438
 County fair pie-eating contest 439
 </nc:ActivityDescriptionText> 440
</nc:Activity> 441
 442
<my:ActivityList> 443
 <nc:ActivityReference structures:ref=”Pie”/> 444
 <nc:ActivityReference structures:ref=”Bill”/> 445
</my:ActivityList> 446

NIEM NDR Draft Version 1.2 Page 13 of 126
August 7, 2007

3. Guiding Principles 447

Principles in this specification provide a foundation for the rules. These principles are 448
generally applicable in most cases. They should not be used as a replacement for 449
common sense or appropriate special cases. 450

The principles are not operationally enforceable; they do not specify constraints on XML 451
schemas and instances. The rules are the normative and enforceable manifestation of 452
the principles. 453

The principles discussed in this section are categorized as follows: 454

• Specification Guidelines 455

• XML Schema Design Guidelines 456

• Modeling Design Guidelines 457

• Implementation Guidelines 458

3.1. Specification Guidelines 459

The principles in this section address what material should be included in this NDR, and 460
how it should be represented. 461

3.1.1. Keep Specification To Minimum 462

This specification should state what is required for interoperability, not all that could be 463
specified. Certain decisions (such as normative XML comments) could create roadblocks 464
for interoperability, making heavy demands on systems for very little gain. The goal is not 465
standardization for standardization’s sake. The goal is to maximize interoperability and 466
reuse. 467

[Principle 1] 468

 This specification should specify what is necessary for interoperability, and no 469
more. 470

3.1.2. Focus On Rules For Schemas 471

This specification should try, as much as is possible, to specify schema-level content. 472
This is a specification for schemas, and so should specify schemas. It should avoid 473
specifying complex data models, or data dictionaries. 474

[Principle 2] 475

 This specification should focus on providing rules for specifying schemas. 476

3.1.3. Use Specific Concise Rules 477

A rule should be as precise and specific as possible, to avoid broad, hard-to-modify rules. 478
Putting multiple clauses in a rule makes it harder to enforce. Using separate rules allows 479
specific conditions to be clearly stated. 480

[Principle 3] 481

 This specification should feature rules which are as specific, precise, and concise 482
as possible. 483

3.2. XML Schema Design Guidelines 484

The principles in this section address how XML Schema technology should be used in 485
designing NIEM-conformant schemas and instances. 486

NIEM NDR Draft Version 1.2 Page 14 of 126
August 7, 2007

3.2.1. Disallow Content Modification with XML Processors 487

XML Schema has constructs that can make the data provided by XML processors 488
different before and after schema processing. A sample of this is the use of XML Schema 489
attribute declarations with default values. Before XML schema validation, there may be 490
no attribute value, but after processing, the attribute value exists. 491

Within NIEM, the purpose of processing instances against schemas is solely validation: 492
testing that data instances match desired constraints and guidelines. It should not be 493
used to change the content of data instances. 494

[Principle 4] 495

 The content of a NIEM-conformant data instance should not be modified by 496
processing against XML schemas. 497

3.2.2. Use XML Validating Parsers for Content Validation 498

NIEM is designed for XML Schema validation. A primary goal is to maximize the amount 499
of validation that may be performed by XML Schema validating parsers. 500

XML Schema validates content using content models: descriptions of what elements and 501
attributes may be contained within an element, and what values are allowable. 502
Mechanisms involving linking using attribute and element values are useful, but should 503
only be relied upon when absolutely necessary. 504

[Principle 5] 505

 NIEM should depend on XML Schema validating parsers for validation of XML 506
content. 507

3.2.3. Validate for Conformance to Reference Schemas 508

Systems that operate on XML data have the opportunity to perform multiple layers of 509
processing. Data may be processed by middleware, XML libraries, XML schemas, and 510
application software. 511

[Principle 6] 512

 The primary purpose of XML Schema validation is to restrict processed data to 513
that data that conforms to agreed-upon rules. This restriction is achieved by 514
marking as invalid that data that does not conform to the rules defined by the 515
schema. 516

3.2.4. Allow Multiple Schemas for XML Constraints 517

The NIEM does not attempt to create a one-size-fits-all schema, to perform all validation. 518
Instead, it creates a set of reference schemas, on which additional constraints may be 519
placed. It also does not focus on language-binding XML Schema implementations, which 520
convert XML Schema definitions into working programs. It is, instead, focused on 521
normalizing language and preserving the meaning of data. 522

[Principle 7] 523

 Constraints on XML instances MAY be validated by multiple schema validation 524
passes, using multiple schemas for a single namespace. 525

3.2.5. Define One Reference Schema Per Namespace 526

NIEM uses the concept of a reference schema, which defines the structure and content 527
of a namespace. For each NIEM-conformant namespace, there is exactly one NIEM 528
reference schema. A user may use a NIEM subset schema in place of a NIEM reference 529

NIEM NDR Draft Version 1.2 Page 15 of 126
August 7, 2007

schema, but all NIEM-conformant instances must validate against a single reference 530
schema for each namespace. 531

[Principle 8] 532

 Each NIEM-conformant namespace will be defined by exactly one reference 533
schema. 534

3.2.6. Disallow Mixed Content 535

When validating XML instance data against XML schemas, mixed content is very difficult 536
to constrain. Instances that use mixed content are difficult to specify, and complicate the 537
task of data processing. Much of the payload carried by mixed content is unchecked, and 538
does not facilitate data standardization or validation. 539

[Principle 9] 540

 NIEM-conformant schemas do not specify data that uses mixed content. 541

3.2.7. Specify Types for All Constructs 542

Schema components within NIEM all have names. This means that there are no 543
anonymous types, elements, or other components defined by NIEM. Once an application 544
has determined the name (i.e. namespace and local name) of an attribute or element 545
used in NIEM-conformant instances, it will also know the type of that attribute or element. 546

There are no local attributes or elements defined by NIEM, only global attributes and 547
elements. This maximizes the ability of application developers to extend, restrict, or 548
otherwise derive definitions of local components from NIEM-conformant components. 549

[Principle 10] 550

 Using named global components in schemas maximizes the capacity for reuse. 551

3.2.8. Avoid Wildcards In Reference Schemas 552

Wildcards in NIEM-conformant schemas work in opposition to standardization. The goal 553
of creating harmonized, standard schemas is to standardize definitions of data. The use 554
of wildcard mechanisms (such as xsd:any, which allows insertion of an arbitrary number 555
of elements from any namespace) allow non-standard data to be passed via otherwise 556
standardized exchanges. Avoidance of wildcards encourages the separation of 557
standardized and non-standardized data. It encourages users to incorporate their data 558
into NIEM in a standardized way. It also encourages users to extend in a way that may 559
be readily incorporated into NIEM. 560

[Principle 11] 561

 Wildcards in standard schemas should be avoided. 562

3.2.9. Provide Default Reference Schema Locations 563

[XMLSchemaStructures] provides three ways to specify the physical location of an XML 564
schema: schemaLocation, an attribute of the element xsd:import, along with 565
xsi:schemaLocation and xsi:noNamespaceSchemaLocation, attributes of an 566
XML schema document element. In all of these uses, the specification explicitly 567
maintains that the schema location specified is a hint, which may be overridden by 568
applications. 569

[Principle 12] 570

 Schema locations specified within NIEM-conformant reference schemas are hints 571
and provide default values to processing applications. 572

NIEM NDR Draft Version 1.2 Page 16 of 126
August 7, 2007

3.3. Modeling Design Guidelines 573

The principles in this section address the design philosophy used in designing the NIEM 574
conceptual model. 575

3.3.1. Namespaces Enhance Reuse 576

NIEM is designed to maximize reuse of namespaces and the schemas that define them. 577
When referring to a concept defined by NIEM, a user should ensure that instances and 578
schemas refer to the namespace defined by NIEM. User-defined namespaces should be 579
used for specializations and extension of NIEM constructs, but should not be used when 580
the NIEM structures are sufficient. 581

[Principle 13] 582

 NIEM-conformant instances and schemas should reuse components from NIEM 583
distribution schemas when possible. 584

NIEM relies heavily on XML namespaces to prevent naming conflicts and clashes. 585
Reuse of any component is always by reference to both its namespace and its local 586
name. All NIEM component names have global scope, therefore validation always 587
occurs against the reference schemas or subsets thereof. 588

Example: 589

<xsd:element ref="nc:BinaryCaptureDate" 590
 minOccurs="0" 591
 maxOccurs="unbounded"/> 592

In this example, nc:BinaryCaptureDate is reused by referencing its element 593
declaration through both its namespace (which is bound to the prefix nc:) and its local 594
name (BinaryCaptureDate). If an element named BinaryCaptureDate is declared 595
in another namespace, it is an entirely different element and is unrelated to 596
nc:BinaryCaptureDate. There is no implicit relationship to 597
nc:BinaryCaptureDate. Any relationship must be made explicit using methods 598
outlined in this document. 599

[Principle 14] 600

 A namespace is a required part of the name of a component. A component's 601
local name is considered independent of, and unassociated with, names from 602
other namespaces. 603

3.3.2. Design NIEM for Extensibility 604

NIEM is designed to be extended. Numerous methods are considered acceptable in 605
creating extended and specialized components. 606

[Principle 15] 607

 NIEM is intended for extension and augmentation by users and developers 608
outside the standardization process. 609

3.4. Implementation Guidelines 610

The principles in this section address issues pertaining to the implementation of 611
applications that use NIEM. 612

NIEM NDR Draft Version 1.2 Page 17 of 126
August 7, 2007

3.4.1. Avoid Displaying Raw XML Data 613

XML data should be made human-understandable when possible, but it is not targeted at 614
human consumers. XML Schema is intended for validators and automatic processing. 615
HTML is intended for browsers. Browsers and similar technology provide human 616
interfaces to XML and other structured content. As such, structured XML content does 617
not belong in places targeted towards human consumption. Human-targeted information 618
should be of a form suitable for presentation. 619

[Principle 16] 620

 XML data is primarily intended for automatic processing, not for literal 621
presentation to people. 622

3.4.2. Leave Implementation Decisions To Implementers 623

NIEM is intended to be an open specification, supported by many diverse 624
implementations. It was designed from data requirements and not from or for any 625
particular system or implementation. Use of NIEM should not depend on specific 626
software, other than XML Schema validating parsers. 627

[Principle 17] 628

 NIEM should not depend on specific software packages, frameworks, or systems 629
for interpretation of XML instances. 630

Similarly, the NIEM should be implemented with commercial off-the-shelf and free 631
software products. 632

[Principle 18] 633

 NIEM should be implemented with a variety of commercial off-the-shelf and free 634
software products. 635

3.4.3. Documentation 636

As will be described in later sections of this document, all NIEM components are 637
documented through their definitions and names. Although it is often very difficult to 638
apply, a data component definition should be drafted before the data component name is 639
assigned. 640

Drafting the definition for a data component first, ensures that the author understands the 641
exact nature of the entity or concept that the data component represents. The 642
component name should subsequently be composed to summarize the definition. 643
Reversing this sequence often results in data definitions that very precisely describe the 644
component name, but do not adequately describe the entity or concept that the 645
component is designed to represent. This potentially leads to the ambiguous use of such 646
components. 647

[Principle 19] 648

 A data component definition should be drafted before the associated data 649
element name is composed. 650

3.4.4. Consistent Naming 651

Components in NIEM should be given names which are consistent with names of other 652
NIEM components. Having consistent names for components has several advantages: 653

1. It is easier to determine the nature of a component when it has a name 654
that conveys the meaning and use of the component. 655

2. It is easier to find a component when it is named predictably. 656

NIEM NDR Draft Version 1.2 Page 18 of 126
August 7, 2007

3. It is easier to create a name for a component when clear guidelines exist. 657

[Principle 20] 658

 Components in NIEM should be given names which are consistent with names of 659
other NIEM components. Such names should be based on simple rules. 660

NIEM NDR Draft Version 1.2 Page 19 of 126
August 7, 2007

4. Relation to Standards 661

This section specifies the standards and specifications to which the NIEM conforms. 662
Where NIEM differs from public standards, the rationale for those differences is 663
discussed in this section. The complete list of standards and specifications referenced in 664
this section appears in Appendix I, References. 665

4.1. XML 1.0 666

[Rule 4-1] 667

 A NIEM-conformant schema MUST conform to XML as specified by [XML]. 668

Rationale 669

 XML is a well-known, commonly used W3C Recommendation. It is supported by 670
a large number of commercial and open source software tools. It is a simple, 671
well-defined, semi-structured data format that is flexible enough to allow for easy 672
extension. XML works with many other powerful associated technologies such 673
as XSLT and XPath. Artifacts of NIEM conform to the most recent 674
recommendation for XML. 675

4.2. XML Namespaces 676

[Rule 4-2] 677

 A NIEM-conformant schema MUST conform to the specification for namespaces 678
in XML, as defined by [XMLNamespaces] and [XMLNamespacesErrata]. 679

Rationale 680

 NIEM is designed to facilitate cross-domain data exchanges and interoperability. 681
The ultimate scope of NIEM is anticipated to be quite large. The primary purpose 682
of namespaces is to avoid naming conflicts, which for NIEM could become quite 683
common, since NIEM stakeholders and IEPD developers define and name many 684
of their own data components independently. Therefore, in NIEM, XML 685
namespaces are employed both to avoid name clashes and to provide a level of 686
independence to participating domains. 687

4.3. XML Schema 688

[Rule 4-3] 689

 A NIEM-conformant schema MUST conform to the W3C XML Schema 690
Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: 691
Datatypes, as specified by [XMLSchemaStructures] and 692
[XMLSchemaDatatypes]. 693

Rationale 694

 XML Schema has become the generally accepted schema language, and is 695
experiencing the most widespread adoption. Although other schema languages 696
exist that offer their own advantages and disadvantages, the current approach is 697
to base NIEM on XML Schema. 698

4.4. ISO 11179, Part 4 699

Good data definitions are fundamental to data interoperability. You cannot effectively 700
exchange what you cannot understand. NIEM employs the guidance of [ISO 11179 Part 701
4] as a baseline for its data component definitions. All NIEM components are 702
documented. 703

NIEM NDR Draft Version 1.2 Page 20 of 126
August 7, 2007

[Definition: documented component] 704

 In a NIEM-conformant schema, a documented component is an XML Schema 705
component that is required to have associated documentation. These schema 706
components are required to have a textual definition for the component to be 707
well-understood. Schemas that do not document their components accordingly 708
are not NIEM-conformant. 709

[Definition: definition] 710

 The definition of a documented component is the content of the occurrence of 711
an element xsd:documentation that is an immediate child of the occurrence 712
of an element xsd:annotation. That element xsd:annotation is itself an 713
immediate child of the element that defines the component. 714

Example of definition of MeasureMetadataType 715

<xsd:complexType name="MeasureMetadataType"> 716
 <xsd:annotation> 717
 <xsd:documentation> 718
 A data type for metadata about a measurement. 719
 </xsd:documentation> 720
 <xsd:appinfo> 721
 <appinfo:Base 722
 appinfo:namespace=http://niem.gov/niem/structures/2.0 723
 appinfo:name="MetadataType"/> 724
 <appinfo:AppliesTo appinfo:name="MeasureType"/> 725
 </xsd:appinfo> 726
 </xsd:annotation> 727
 <xsd:complexContent> 728
 <xsd:extension base="s:MetadataType"> 729
 <xsd:sequence> 730
 <xsd:element ref="nc:MeasureDate" 731
 minOccurs="0" maxOccurs="unbounded"/> 732
 <xsd:element ref="nc:Measurer" 733
 minOccurs="0" maxOccurs="unbounded"/> 734
 </xsd:sequence> 735
 </xsd:extension> 736
 </xsd:complexContent> 737
</xsd:complexType> 738

[Rule 4-4] 739

 Within a NIEM-conformant schema, the text definition provided for each 740
documented component SHALL follow the requirements and recommendations 741
for data definitions given by [ISO 11179 Part 4]. 742

Rationale 743

 To advance the goal of creating semantically-rich NIEM-conformant schemas, it 744
is necessary that data definitions be descriptive, meaningful, and precise. [ISO 745
11179 Part 4] provides standard structure and rules for defining data definitions. 746
The NIEM uses this standard for component definitions. 747

Note that the metadata maintained for each NIEM component contains additional details, 748
including domain-specific usage examples and keywords. Such metadata is used to 749
enhance search and discovery of components in a registry, and therefore, is not included 750
in schemas. 751

For convenience and reference, the summary requirements and recommendations in 752
[ISO 11179 Part 4] are reproduced here: 753

ISO 11179 Requirements 754
 755

http://niem.gov/niem/structures/2.0�

NIEM NDR Draft Version 1.2 Page 21 of 126
August 7, 2007

A data definition SHALL: 756
• be stated in the singular. 757
• state what the concept is, not only what it is not. 758
• be stated as a descriptive phrase or sentence(s). 759
• contain only commonly understood abbreviations. 760
• be expressed without embedding definitions of other data or underlying concepts. 761

 762
ISO 11179 Recommendations 763
 764
A data definition SHOULD: 765

• state the essential meaning of the concept. 766
• be precise and unambiguous. 767
• be concise. 768
• be able to stand alone. 769
• be expressed without embedding rationale, functional usage, or procedural 770

information. 771
• avoid circular reasoning. 772
• use the same terminology and consistent logical structure for related definitions. 773
• be appropriate for the type of metadata item being defined. 774

In addition to the requirements and recommendations of [ISO 11179 Part 4], NIEM also 775
applies additional rules to data definitions. These rules are detailed in Section 6.2.1, 776
Human-Readable Documentation. 777

4.5. ISO 11179, Part 5 778

Names are a simple but incomplete means of providing semantics to data components. 779
Data definitions, structure, and context help to fill the gap left by the limitations of naming. 780
The goals for data component names should be syntactic consistency, semantic 781
precision, and simplicity. In many cases, these goals conflict and it is sometimes 782
necessary to compromise or to allow exceptions to ensure clarity and understanding. To 783
the extent possible, NIEM applies [ISO 11179 Part 5] to construct NIEM data component 784
names. 785

The set of NIEM data components is a collection of data representations for real world 786
objects, concepts, their associated properties and relationships. Thus, names for these 787
components would consist of the terms (words) for object classes or that describe object 788
classes, their characteristic properties, subparts, and relationships. 789

[Rule 4-5] 790

 In general, a NIEM component name SHALL be formed by applying the 791
informative guidelines and examples detailed in Annex A of [ISO 11179 Part 5], 792
with exceptions as specified in this document, most notably those specified in 793
Section 8, Naming Rules. 794

Rationale 795

 The guidelines and examples of [ISO 11179 Part 5] provide a simple, consistent 796
syntax for data names which captures context and thereby imparts a reasonable 797
degree of semantic precision. 798

NIEM uses the guidelines and examples of [ISO 11179 Part 5] as a baseline for 799
normative naming rules. However, some NIEM components require bending of these 800
rules. Special naming rules for these classes of components are presented and 801
discussed in Section 8. In spite of these exceptions, most NIEM component names can 802
be disassembled into their [ISO 11179 Part 5] constituent words or terms. 803

NIEM NDR Draft Version 1.2 Page 22 of 126
August 7, 2007

Example: 804

The NIEM component name AircraftFuselageColorCode disassembles as follows: 805
• Object class term = “Aircraft” 806
• Qualifier term = “Fuselage” 807
• Property term = “Color” 808
• Representation term = “Code” 809

Section 8, Naming Rules details the specific rules for each kind of term and how to 810
construct NIEM component names from them. Exceptions for special components are 811
also described in Section 8. 812

http://niem.gtri.gatech.edu/iepd-ssgt/SSGT-GetProperty.do?propertyKey=no-33�

NIEM NDR Draft Version 1.2 Page 23 of 126
August 7, 2007

5. XML Schema Design Rules 813

The W3C XML Schema Language provides many features that allow a developer to 814
represent a logical data model many different ways. This section establishes rules for the 815
use of XML Schema constructs within NIEM-conformant schemas. Because the XML 816
Schema specifications are flexible, comprehensive rules are needed to achieve a 817
balance between establishing uniform schema design and providing developers flexibility 818
to solve novel data modeling problems 819

Note that external schemas (non NIEM-conformant schemas) do not need to obey the 820
rules set forth in this section. So long as schema components from external schemas are 821
adapted for use with NIEM, according to the modeling rules in Section, , they may be 822
used as they appear in the external standard, even if the schema components violate the 823
rules for NIEM-conformant schemas. 824

The XML Schema design rules in this section fall into the following categories: 825

• Restrictions on XML Schema Constructs 826

• xsd:schema Document Element 827

• Namespace Imports 828

• Annotations 829

• Type Definitions 830

• Additional De 831

5.1. Restrictions on XML Schema Constructs 832

There are a number of XML Schema constructs that are not used within NIEM-833
conformant schemas. Many of these constructs provide capability that is not currently 834
needed within NIEM. Some of these constructs create problems for interoperability, or 835
with tool support, or with clarity or precision of data model definition. 836

5.1.1. No Mixed Content 837

[Rule 5-1] 838

 Within a NIEM-conformant schema, an element xsd:complexType SHALL 839
NOT own the attribute mixed with the value true. 840

[Rule 5-2] 841

 Within a NIEM-conformant schema, an element declaration which is of complex 842
content SHALL NOT own the attribute mixed with the value true. 843

Rationale 844

 Mixed content allows the mixing of data tags with text. Languages such as 845
XHTML use this syntax for markup of text. NIEM-conformant schemas define 846
XML that is for data exchange, not text markup. Mixed content creates 847
complexity in processing, defining, and constraining content. 848

 Well-defined markup languages exist outside of NIEM, and may be used with 849
NIEM data. External schemas may include mixed content, and may be used with 850
NIEM. However, mixed content must not be defined by NIEM-conformant 851
schemas in keeping with [Principle 9]. 852

NIEM NDR Draft Version 1.2 Page 24 of 126
August 7, 2007

5.1.2. No Notations 853

[Rule 5-3] 854

 A NIEM-conformant schema SHALL NOT contain a reference to the type 855
definition xsd:NOTATION, or to a type derived from that type. 856

[Rule 5-4] 857

 A NIEM-conformant schema SHALL NOT contain the element xsd:notation. 858

Rationale 859

 XML Schema notations allow the attachment of system and public identifiers on 860
fields of data. The notation mechanism does not play a part in validation of 861
instances and is not supported by NIEM. 862

5.1.3. No Schema Inclusion 863

[Rule 5-5] 864

 A NIEM-conformant schema SHALL NOT contain the element xsd:include. 865

Rationale 866

 Element xsd:include brings schemas defined in separate files into the current 867
namespace. It breaks a namespace up into arbitrary partial schemas, which 868
needlessly complicates the schema structure, making it harder to reuse, and 869
process, and also increases the likelihood of conflicting definitions. 870

 Inclusion of schemas that don't have namespaces also complicates schema 871
understanding. This inclusion makes it difficult to find the realization of a specific 872
schema artifact, and creating aliases for schema components that should be 873
reused. Inclusion of schemas also violates [Principle 8], as it uses multiple 874
schemas to construct a namespace. 875

5.1.4. No Schema Redefinition 876

[Rule 5-6] 877

 A NIEM-conformant schema SHALL NOT contain the element xsd:redefine. 878

Rationale 879

 The xsd:redefine element allows an XML schema to restrict and extend 880
components from a namespace, in that very namespace. Such redefinition 881
introduces duplication of definitions, allowing multiple definitions to exist for 882
components from a single namespace. This violates [Principle 8] that a single 883
reference schema defines a NIEM-conformant namespace. 884

5.1.5. Wildcard Restrictions 885

There are many constructs within XML Schema that act as wildcards. That is, they 886
introduce buckets which may carry arbitrary or otherwise non-validated content. Such 887
constructs violate [Principle 11], and as such provide implicit workarounds for the difficult 888
task of agreeing on the content of data models. Such workarounds should be made 889
explicitly, outside the core data model. 890

5.1.5.1. No Unconstrained Type Substitution 891

[Rule 5-7] 892

 A NIEM-conformant schema SHALL NOT reference the type xsd:anyType. 893

NIEM NDR Draft Version 1.2 Page 25 of 126
August 7, 2007

Rationale 894

 XML Schema has the concept of the "ur-type", a type that is the root of all other 895
types. This type is realized in schemas as xsd:anyType. 896

 NIEM-conformant schemas must not use xsd:anyType, because this feature 897
permits the introduction of arbitrary content (i.e. untyped and unconstrained data) 898
into an XML instance. NIEM intends that all constructs within the instance be 899
described by the schemas describing that instance. 900

5.1.5.2. No Unconstrained Text Substitution 901

[Rule 5-8] 902

 A NIEM-conformant schema SHALL NOT reference the type 903
xsd:anySimpleType. 904

Rationale 905

 XML Schema provides a restriction of the “ur-type”, which contains only simple 906
content. This provides a wildcard for arbitrary text. It is realized in XML Schema 907
as xsd:anySimpleType. 908

 NIEM-conformant schemas must not use xsd:anySimpleType because this 909
feature is insufficiently constrained to provide a meaningful starting point for 910
content definitions. Instead, content should be based on one of the more 911
specifically-defined simple types defined by XML Schema. 912

5.1.5.3. Untyped Elements Must be Abstract 913

[Rule 5-9] 914

 Within a NIEM-conformant schema, an element declaration with the attribute 915
name and without the attribute type MUST carry the attribute abstract with the 916
value true. 917

Rationale 918

 Untyped element declarations act as wildcards that may carry arbitrary data. By 919
declaring such types abstract, NIEM allows the creation of type independent 920
semantics without allowing arbitrary content to appear in XML instances. 921

5.1.5.4. No Untyped Attributes 922

[Rule 5-10] 923

 Within a NIEM-conformant schema, an attribute declaration with attribute name 924
MUST carry the attribute type. 925

Rationale 926

 Untyped XML schema attributes allow arbitrary content, with no semantics. 927
Attributes must have a type, so that specific syntax and semantics will be 928
provided. 929

5.1.5.5. No Unconstrained Element Substitution 930

[Rule 5-11] 931

 A NIEM-conformant schema SHALL NOT contain the element xsd:any. 932

Rationale 933

 The xsd:any particle (see Model Group Restrictions for an informative definition 934
of particle) provides a wildcard which may carry arbitrary content. The particle 935

NIEM NDR Draft Version 1.2 Page 26 of 126
August 7, 2007

xsd:any may appear within constraint schemas or within other schemas that are 936
not NIEM-conformant, but is prohibited in NIEM-conformant schemas. 937

5.1.5.6. No Unconstrained Attribute Substitution 938

[Rule 5-12] 939

 A NIEM-conformant schema SHALL NOT contain the element 940
xsd:anyAttribute. 941

Rationale 942

 The xsd:anyAttribute element provides a wildcard, where arbitrary attributes 943
may appear. The element xsd:anyAttribute may appear within constraint 944
schemas or within other schemas that are not NIEM-conformant, but is prohibited 945
in NIEM-conformant schemas. 946

5.1.6. Component Naming Restrictions 947

All NIEM components must be named. That is, type definitions, and element and 948
attribute declarations must be given explicit names -- local and anonymous component 949
definition is not allowed. Note that XML Schema enforces the placement of attribute 950
group and model group definitions as top-level components, which forces the 951
components to be named. 952

5.1.6.1. No Anonymous Type Definitions 953

[Rule 5-13] 954

 Within a NIEM-conformant schema, any type definition MUST appear as an 955
immediate child of the document element xsd:schema. 956

Rationale 957

 NIEM does not support anonymous types in NIEM-conformant schemas. All XML 958
Schema "top-level" types (children of the document element) are required by 959
XML Schema to be named. By requiring NIEM type definitions to be top level, 960
they are forced to be named and are therefore globally reusable. 961

5.1.6.2. No Local Element Declarations 962

[Rule 5-14] 963

 Within a NIEM-conformant schema, any element declaration carrying the 964
attribute name MUST appear as an immediate child of the document element 965
xsd:schema. 966

Rationale 967

 All schema components defined by NIEM schemas must be named, accessible 968
from outside the defining schema, and reusable across schemas. Local element 969
definitions provide named elements that are not reusable outside the context in 970
which they are defined. Requiring named NIEM elements to be top level ensures 971
that they are globally reusable. 972

5.1.6.3. No Local Attribute Definitions 973

[Rule 5-15] 974

 Within a NIEM-conformant schema, any attribute declaration owning the attribute 975
name MUST appear as an immediate child of the document element 976
xsd:schema. 977

NIEM NDR Draft Version 1.2 Page 27 of 126
August 7, 2007

Rationale 978

 All schema components defined by NIEM schemas are named, accessible from 979
outside the defining schema, and reusable across schemas. Local attribute 980
definitions provide named attributes that are not reusable outside the context in 981
which they are defined. Requiring named NIEM attributes to be top level ensures 982
that they are globally reusable. 983

5.1.7. No Uniqueness Constraints 984

[Rule 5-16] 985

 A NIEM-conformant schema SHALL NOT contain any of the elements 986
xsd:unique, xsd:key, xsd:keyref, xsd:selector, or xsd:field. 987

Rationale 988

 XML Schema provides NIEM the ability to apply uniqueness constraints to 989
schema-validated content. Such mechanisms have value, but they have not 990
been included as required for NIEM. However, these elements may be used in 991
subset or constraint schemas. 992

5.1.8. Model Group Restrictions 993

Complex content definitions in XML Schema use model group schema components. 994
These schema components, xsd:all, xsd:choice and xsd:sequence, also 995
called compositors, provide for ordering and selection of particles within a model group. 996

XML Schema defines a particle as an occurrence of xsd:element, xsd:sequence, 997
xsd:choice, xsd:any (wildcard) and xsd:group (model group) within a content 998
model. For example, an xsd:sequence within a XML Schema complex type is a 999
particle. An xsd:element occurring within an xsd:sequence is also a particle. 1000

5.1.8.1. Restrictions on Particle Ordering 1001

[Rule 5-17] 1002

 A NIEM-conformant schema SHALL NOT contain the element xsd:all or the 1003
element xsd:choice. 1004

Rationale 1005

 The element xsd:all provides a set of particles (e.g. elements) which may be 1006
included in an instance, in no particular order. The element xsd:choice 1007
provides an exclusive set of particles, one of which may appear in an instance. 1008
Each of these can greatly complicate processing and may provide complex 1009
regular expressions which are difficult to comprehend and satisfy. The only 1010
particle ordering mechanism allowed for use within NIEM-conformant schemas is 1011
xsd:sequence 1012

5.1.8.2. No Recursively Defined Model Groups 1013

[Rule 5-18] 1014

 Within a NIEM-conformant schema, any immediate child of a model group 1015
xsd:sequence element MUST be one of xsd:annotation, or 1016
xsd:element. 1017

Rationale 1018

 XML Schema provides the capability for model groups to be recursively defined. 1019
This means that a sequence may contain a sequence. This rule is designed to 1020
keep content models simple, comprehensive and reusable: The content of an 1021

NIEM NDR Draft Version 1.2 Page 28 of 126
August 7, 2007

element should boil down to a sequence of elements, defined in as 1022
straightforward a manner as is possible. 1023

 1024

5.1.8.3. Restrictions on Named Groups 1025

[Rule 5-19] 1026

 A NIEM-conformant schema SHALL NOT contain the element xsd:group. 1027

Rationale 1028

 NIEM does not allow groups of elements to be named other than as named 1029
complex types. 1030

5.1.8.4. Particle Cardinality Restrictions 1031

[Rule 5-20] 1032

 Within a NIEM-conformant schema, if the element xsd:sequence carries the 1033
attribute minOccurs, it MUST set the value for the attribute to 1. 1034

[Rule 5-21] 1035

 Within a NIEM-conformant schema, if the element xsd:sequence carries the 1036
attribute maxOccurs, it MUST set the value of the attribute to 1. 1037

Rationale 1038

 XML Schema allows each particle to specify cardinality (how many times the 1039
particle may appear in an instance). NIEM restricts the cardinality of 1040
xsd:sequence and xsd:group particles to exactly one, to ensure that content 1041
model definitions are defined in as straightforward a manner as possible. 1042

Discussion 1043

 Note that the particle xsd:any is not allowed in NIEM-conformant schema by 1044
[Rule 5-11] 1045

 Note also that element declarations acting as a particle (particles formed by 1046
xsd:element) may have any cardinality; they are not restricted by this rule. 1047
Should a user desire the behavior that would be obtained from the use of special 1048
cardinalities on these particles, he should define them within explicitly-named 1049
elements. 1050

5.1.9. Block Substitution Restrictions 1051

XML Schema provides a mechanism that will prevent substitution for an element 1052
declaration or type definition. That is, an element declaration may declare one or more of 1053
the following: 1054

1. An instance of this element declaration may not substitute an extended type 1055

2. An instance of this element declaration may not substitute a restricted type 1056

3. An instance of this element declaration may not substitute another element 1057

These restriction mechanisms are very useful in instances; they allow restriction of 1058
content models down to exact types and elements. However, in shared data models, 1059
they limit reuse and customization options, in opposition to [Principle 13]. 1060

[Rule 5-22] 1061

 Within a NIEM-conformant schema, if an element declaration carries the attribute 1062
block, it MUST set the value for the attribute to the empty string. 1063

NIEM NDR Draft Version 1.2 Page 29 of 126
August 7, 2007

[Rule 5-23] 1064

 Within a NIEM-conformant schema, if a complex type definition carries the 1065
attribute block, it MUST set the value for the attribute to the empty string. 1066

[Rule 5-24] 1067

 Within a NIEM-conformant schema, if the document element xsd:schema 1068
carries the attribute blockDefault, it MUST set the value for the attribute to the 1069
empty string. 1070

Rationale 1071

 Restriction of substitution options reduces capacity for reuse, and so is forbidden 1072
within NIEM-conformant schemas In particular, setting the block value at the 1073
schema level complicates understanding of component definitions. 1074

5.1.10. Final Value Restrictions 1075

XML Schema provides the capability for type definitions and elements to declare a final 1076
value. This value prevents the creation of derived components. In shared data models, 1077
this capability limits reuse and customization options. in opposition to [Principle 13] 1078

[Rule 5-25] 1079

 Within a NIEM-conformant schema, if a simple type definition carries the attribute 1080
final, it MUST set the value for the attribute to the empty string. 1081

[Rule 5-26] 1082

 Within a NIEM-conformant schema, if a complex type definition carries the 1083
attribute final, it MUST set the value for the attribute to the empty string. 1084

[Rule 5-27] 1085

 Within a NIEM-conformant schema, if an element declaration carries the attribute 1086
final, it MUST set the value for the attribute to the empty string. 1087

[Rule 5-28] 1088

 Within a NIEM-conformant schema, if the document element xsd:schema 1089
carries the attribute finalDefault, it MUST set the value for that attribute to 1090
the empty string. 1091

Rationale 1092

 Restriction of derivation options reduces capacity for reuse and so is forbidden 1093
within NIEM-conformant schemas. 1094

5.1.11. Default Value Restrictions 1095

XML Schema provides the capability for element and attribute declarations to provide 1096
default values when XML instances using those components do not provide values. 1097

[Rule 5-29] 1098

 Within a NIEM-conformant schema, any element xsd:element SHALL NOT 1099
carry the attribute default. 1100

[Rule 5-30] 1101

 Within a NIEM-conformant schema, any element xsd:attribute SHALL NOT 1102
carry the attribute default. 1103

NIEM NDR Draft Version 1.2 Page 30 of 126
August 7, 2007

Rationale 1104

 The use of default values means that the act of validating a schema will insert a 1105
value into an XML instance where none existed prior to schema validation. 1106
Schema validation is for rejection of invalid instances, not for modifying instance 1107
content, as specified in [Principle 4]. 1108

5.1.12. Simple Type Derivation Restrictions 1109

XML Schema provides two methods for combining simple types together into more 1110
complicated simple types: NIEM explicitly disallows the use of both these methods. 1111

5.1.12.1. No Lists of Simple Type 1112

An xsd:list creates a new simple type that consists of multiple occurrences of the 1113
original type, separated by whitespaces. An example of a list of xsd:integer is "317 1114
4 36 114.” 1115

[Rule 5-31] 1116

 A NIEM-conformant schema SHALL NOT contain the element xsd:list. 1117

Rationale 1118

 Such structured sequences of simple values should be represented with 1119
sequences of elements, rather than embedding the values in a single value. 1120

5.1.12.2. No Unions of Simple Type 1121

An xsd:union of several simple types creates a new simple type that may consist of the 1122
content of any of the member types. An example of a union is a union between 1123
xsd:integer and xsd:anyURI would produce a simple type that may contain a URI or 1124
integer value. 1125

[Rule 5-32] 1126

 A NIEM-conformant schema SHALL NOT contain the element xsd:union. 1127

Rationale 1128

 xsd:union loses the original semantic information associated with the member 1129
types. Providing such options should be done at the element level, rather than 1130
within the definitions of simple type. 1131

5.2. xsd:schema Document Element 1132

The features of XML Schema allow for flexibility of use for many different and varied 1133
types of implementation. NIEM requires consistent use of these features. 1134

[Rule 5-33] 1135

 Within a NIEM-conformant schema, the document element xsd:schema MUST 1136
carry the attribute targetNamespace. 1137

[Rule 5-34] 1138

 The value of the required attribute targetNamespace on the document element 1139
xsd:schema MUST match the production <absolute-URI> as defined by 1140
[RFC3986]. 1141

Rationale 1142

 Schemas without defined namespaces provide definitions that are ambiguous, in 1143
that they are not universally identifiable. 1144

NIEM NDR Draft Version 1.2 Page 31 of 126
August 7, 2007

 Absolute URIs are the only universally meaningful URIs. Finding the target 1145
namespace using standard XML Base technology is complicated, and not 1146
specified by XML Schema. Relative URIs are not universally identifiable, as they 1147
are context-specific. 1148

Discussion 1149

 The document element xsd:schema may contain optional attributes 1150
attributeFormDefault and elementFormDefault. The values of these 1151
attributes are immaterial to a NIEM-conformant schema, as each attribute 1152
defined by a NIEM-conformant schema must be defined at the top-level, and so 1153
must be qualified with the target namespace of its declaration. 1154

[Rule 5-35] 1155

 Within a NIEM-conformant schema, the document element xsd:schema MUST 1156
carry the attribute version. 1157

[Rule 5-36] 1158

 The value of the required attribute version on the document element 1159
xsd:schema MUST NOT be an empty string. 1160

Rationale 1161

 It is very useful to be able to tell one version of a schema from another. Apart 1162
from the use of namespaces for versioning, it is sometimes necessary to release 1163
multiple versions of schema documents. Such use might include: 1164

• Subset schemas 1165

• Error corrections or bug-fixes 1166

• Documentation changes 1167

• Contact information updates 1168

 In such cases, a different value for the version attribute implies a different 1169
version of the schema. No specific meaning is assigned to specific version 1170
identifiers. 1171

5.3. Namespace Imports 1172

XML Schema requires that namespaces used in external references be imported using 1173
the xsd:import element. The xsd:import element appears as an immediate child of 1174
the xsd:schema element. A schema must import any namespace which 1175

1. is not the local namespace, and 1176

2. is referenced from the schema. 1177

The behavior of import statements is not necessarily intuitive. In short, the import 1178
introduces namespace into the schema in which the import appears; it has no transitive 1179
effect. If the namespaces of an import statement is not referenced from the schema, then 1180
the import statement has no effect. The import statement cannot be used to direct 1181
schema locations for schemas not referenced from the schema performing the import. 1182
The schema location directed by the import element may be overridden by user directive 1183
at the parser, or by being overridden by import elements from other schemas. 1184

Imports of namespaces should be made as uniform as possible; all schemas in a schema 1185
set should agree on what schema location goes with a particular namespace. Otherwise, 1186
behavior may be dependent on the behavior of the parser, and the order of components 1187
in instance documents. 1188

NIEM NDR Draft Version 1.2 Page 32 of 126
August 7, 2007

5.3.1. xsd:import Element Restrictions 1189

[Rule 5-37] 1190

 Within a NIEM-conformant schema, the element xsd:import MUST carry the 1191
attribute namespace. 1192

[Rule 5-38] 1193

 The value of the required attribute namespace carried by the element 1194
xsd:import MUST match the production <absolute-URI> as defined by 1195
[RFC3986]. 1196

Rationale 1197

 An import that does not specify a namespace is enabling reference to non-1198
namespaced components. NIEM requires that all components have a defined 1199
namespace. It is important that the namespace declared by a schema be 1200
universally defined and unambiguous. Use of the standard XML Base for 1201
processing is not specified by XML Schema, and so is not supported here. 1202

[Rule 5-39] 1203

 Within a NIEM-conformant schema, the element xsd:import MUST carry the 1204
attribute schemaLocation. 1205

Rationale 1206

 An import that does not specify a schema location gives no clue to processing 1207
applications as to where to find an implementation of the namespace. Even 1208
though such a provided schema location may be overridden, it is important that 1209
an initial default be provided for processing. 1210

[Rule 5-41] 1211

 Within a NIEM-conformant schema, the value of the required attribute 1212
schemaLocation carried by the element xsd:import MUST match either the 1213
production <absolute-URI>, or the definition of "relative-path reference", as 1214
defined by [RFC3986]. 1215

Rationale 1216

 The default value may be specified either as absolute or relative URIs. Since 1217
URNs are not resolvable, they are inappropriate for use in schemaLocation. 1218
The requirement for conformance to "relative-path reference" is required to avoid 1219
the more obscure syntax of "network-path reference" and the system-specific 1220
"absolute-path reference". 1221

[Rule 5-42] 1222

 Within a NIEM-conformant schema, the value of the required attribute 1223
schemaLocation carried by the element xsd:import MUST be resolvable to 1224
a XML schema document file that is valid according to [XMLSchemaStructures] 1225
and [XMLSchemaDatatypes]. 1226

Rationale 1227

 The XML Schema specification requires that the object imported via 1228
xsd:import must be a schema document. This rule reinforces that 1229
requirement. 1230

NIEM NDR Draft Version 1.2 Page 33 of 126
August 7, 2007

Discussion 1231

 Note that relative URI references are dereferenced from the location of the 1232
schema document performing the import, not from the location of an instance or 1233
other schema. Although NIEM distribution schemas use only relative URI 1234
references, that need not be the case for other NIEM-conformant schemas. 1235

5.3.2. Including XML Content from Other Namespaces 1236

Within an XML schema, there are several mechanisms to include XML content that is not 1237
from the XML or XML Schema namespaces. Those mechanisms are: 1238

1. Carrying attributes from other than the XML or XML Schema namespaces on an 1239
element in the XML Schema namespace. 1240

 By the rules of XML Schema, any element may have attributes that are from 1241
other namespaces. These attributes do not participate in validation, but may 1242
carry information useful to tools which process schemas. 1243

2. Adding content to the elements xsd:appinfo and xsd:documentation. 1244

 XML Schema allows arbitrary XML content to be included within annotations. 1245
Such XML does not participate in validation, but may communicate useful 1246
information to schema readers or processors. 1247

NIEM requires all such XML content to be “schema-valid.” That is, it must have a 1248
schema, and it must validate against that schema. The schemas must be introduced via 1249
xsd:import elements within the schema in which the content is used. This is for two 1250
reasons: 1251

1. Some tools require imports of namespaces used within schemas, and validate 1252
against those schemas. 1253

2. The definition and the validity of content within schemas should be clear. 1254

[Rule 5-43] 1255

 Within a NIEM-conformant schema, when a namespace other than the XML 1256
namespace or the XML Schema namespace is used, it MUST be imported into 1257
the schema using the xsd:import element. 1258

Rationale 1259

 This rule ensures that used namespaces have recognizable defining sources, 1260
and that they will cooperate with existing tools. 1261

[Rule 5-44] 1262

 Within a NIEM-conformant schema, when a namespace other than the XML 1263
namespace or the XML Schema namespace is used, its content MUST be valid 1264
with respect to the schema imported for that namespace. 1265

Rationale 1266

 XML Schema does not address the schema-validity of content used for 1267
annotations or attributes on schema components. This rule ensures that content 1268
used in such a manner is schema-valid. This encourages interoperable data 1269
definitions and schema documents. 1270

NIEM NDR Draft Version 1.2 Page 34 of 126
August 7, 2007

5.4. Annotations 1271

Annotations in XML Schema "provide for human- and machine-targeted annotations of 1272
schema components."1 The two types: human-targeted and machine-targeted, are kept 1273
separate by the use of two separate container elements defined by XML Schema: 1274
xsd:documentation and xsd:appinfo. 1275

[Rule 5-45] 1276

 Within a NIEM-conformant schema, an element SHALL have at most one 1277
instance of an element xsd:annotation as an immediate child. 1278

Rationale 1279

 XML Schema allows annotations to be added to components in a fairly loose 1280
manner: there may be multiple annotations, each of which may have multiple 1281
documentation or appinfo elements. This flexibility in the syntax provides no 1282
additional expressivity, but does complicate processing, and so is forbidden in 1283
NIEM. 1284

5.4.1. Human-Readable Documentation 1285

XML Schema describes the content of xsd:documentation elements as "user 1286
information". This information is targeted for reading by humans. The XML Schema 1287
specification does not say what form human-targeted information should take. Within 1288
NIEM, user information is plain text, with no formatting or XML structure. 1289

[Rule 5-46] 1290

 Within a NIEM-conformant schema, the content of an xsd:documentation 1291
element MUST be character information items as specified by [XMLInfoSet]. 1292

Rationale 1293

 According to the XML Schema specification, the content of 1294
xsd:documentation elements is intended for human consumption, whereas 1295
other structured XML content is intended for machine consumption. Therefore, 1296
the xsd:documentation element MUST NOT contain structured XML data. As 1297
such, any XML content appearing within a documentation element is in the 1298
context of human-targeted examples, and should be escaped using < and 1299
>. This rule also prohibits comments within documentation elements. 1300

 See [SchemaForXMLSchema], the schema for XML Schema, as an example of 1301
documentation elements containing properly escaped XML elements. 1302

[Rule 5-47] 1303

 Within a NIEM-conformant schema, the element xsd:annotation MUST have 1304
at most one instance of the element xsd:documentation as an immediate 1305
child. 1306

Rationale 1307

 NIEM-conformant schemas apply specific meaning to xsd:documentation 1308
elements: they provide definitions for components. In this context, multiple 1309
documentation elements obscure understanding. 1310

1 From http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/#element-
annotation

NIEM NDR Draft Version 1.2 Page 35 of 126
August 7, 2007

 XML comments are not schema constructs and are not specifically associated 1311
with any schema-based components. As such, comments are not considered 1312
semantically meaningful by NIEM, and may not be retained through processing 1313
of NIEM schemas. 1314

[Rule 5-48] 1315

 XML comments SHALL not be used for persistent information about constructs 1316
within XML Schemas. 1317

Rationale 1318

 Since XML comments are not associated with any specific XML Schema 1319
construct, there is no standard way to interpret comments. As such, comments 1320
should be reserved for internal use, and XML Schema annotations should be 1321
preferred for meaningful information about components. NIEM specifically 1322
defines how information should be encapsulated in NIEM-conformant schemas 1323
via xsd:annotation elements. 1324

5.4.2. Machine-Readable Annotations 1325

XML Schema provides special annotations for support of automatic processing. The XML 1326
Schema specification provides the element xsd:appinfo to carry such content, and 1327
does not specify what style of content they should carry. In NIEM, xsd:appinfo 1328
elements carry structured XML content. 1329

[Rule 5-49] 1330

 Within a NIEM-conformant schema, any immediate child of an xsd:appinfo 1331
element SHALL be an element information item, or a comment information item. 1332

Rationale 1333

 Application information elements are intended for "automatic processing", and so 1334
should contain machine-oriented data, XML. 1335

[Rule 5-50] 1336

 Within a NIEM-conformant schema, any element that is an immediate child of an 1337
xsd:appinfo element SHALL be in a namespace. 1338

Rationale 1339

 Use of default namespace is allowed, but content has to have a real namespace, 1340
and namespaces must be declared. The XML namespaces specification 1341
includes the concept of content not in a namespace. Non-namespaced data runs 1342
counter to the principle of distinctly identifiable data definitions. 1343

[Rule 5-50.1] 1344

 Within a NIEM-conformant schema, an element in the XML Schema namespace 1345
MUST NOT occur as a descendant of any element xsd:appinfo. 1346

Rationale 1347

 NIEM-conformant schemas are designed to be very easily processed. Although 1348
uses of XML Schema elements as content of xsd:appinfo elements could be 1349
contrived, it is not current practice, and could seriously complicate the authoring 1350
of schema validators and processors, such as XSLT, which may evaluate XML 1351
elements by their namespace and name. Forbidding the use of XML Schema 1352
elements outside valid uses of schema will simplify such processing. 1353

NIEM NDR Draft Version 1.2 Page 36 of 126
August 7, 2007

5.5. Type Definitions 1354

XML Schema provides a variety of ways to define new types. This section covers first the 1355
NIEM restrictions on defining simple types and then on defining complex types, with both 1356
simple and complex content. 1357

5.5.1. Simple Type Definitions 1358

According to XML Schema, there are many ways to construct simple types. Within NIEM, 1359
the options are narrowed, in order to direct designs into fewer, better-defined patterns. 1360

[Rule 5-51] 1361

 Within NIEM-conformant schemas, the element xsd:simpleType MUST have 1362
the element xsd:restriction as an immediate child. 1363

Rationale 1364

 Any simple type must be a restriction of another type. The rules in Section 1365
5.1.12, Simple Type Derivation Restrictions, eliminate the use of xsd:list and 1366
xsd:union in simple type derivations. Therefore, only xsd:restriction may 1367
be used to make new simple types. 1368

5.5.2. Complex Type Definitions 1369

XML Schema provides a large amount of flexibility in the creation of complex types. 1370
NIEM narrows down the schema capability to a smaller set of constructs. 1371

Note that rules on prohibited constructs (Section 5.1.6.1: No Anonymous Type 1372
Definitions, above) forbid defining complex types as local types. All complex type 1373
definitions must be top-level, named components. 1374

XML Schema makes a distinction between complex types with simple content versus 1375
complex types with complex content. Complex types with simple content (CSCs) have 1376
content which is not allowed to contain XML elements. Complex types with complex 1377
content (CCCs) have content which does contain XML elements. Since mixed content is 1378
prohibited in NIEM by [Rule 5-1], all NIEM-conformant complex types are either CSCs or 1379
CCCs. 1380

[Rule 5-52] 1381

 Within a NIEM-conformant schema, the element xsd:complexType MUST 1382
have as an immediate child either the element xsd:complexContent or the 1383
element xsd:simpleContent. 1384

Rationale 1385

 XML Schema provides shorthand to defining complex content of a complex type, 1386
which is to define the complex type with immediate children which specify 1387
elements, or other groups, and attributes. In the desire to normalize schema 1388
representation of types, and to be explicit, NIEM forbids the use of that 1389
shorthand. 1390

5.5.3. Simple Content (CSC) Restrictions 1391

Within a NIEM-conformant schema, a CSC can be created one of two ways: 1392

1. By extension of an existing CSC, or 1393

2. By extension of an existing simple type. 1394

Both of these methods use the element xsd:extension. 1395

[Rule 5-53] 1396

NIEM NDR Draft Version 1.2 Page 37 of 126
August 7, 2007

 Within a NIEM-conformant schema, the element xsd:simpleContent MUST 1397
have as an immediate child the element xsd:extension. 1398

Rationale 1399

 This rule ensures that the definition of a CSC will use the XML Schema extension 1400
facility. This allows for the above cases, while disallowing much more 1401
complicated syntactic options available in XML Schema. 1402

Although the two above methods have similar syntax, there are subtle differences. 1403
NIEM's conformance rules ensure that any complex type has the necessary attributes for 1404
representing IDs, metadata, and link metadata. So, case 1 does not require adding these 1405
attributes, as they are guaranteed to occur in the base type. 1406

However, in case 2, in which a new complex type is created from a simple type, the 1407
attributes for complex types must be added. This is done by reference to the attribute 1408
group structures:SimpleObjectAttributeGroup: 1409

[Rule 5-54] 1410

 Within a NIEM-conformant schema, given an element xsd:simpleContent 1411
with a child xsd:extension owning an attribute base, if the attribute base has 1412
a value that resolves to the name of a simple type, then the element 1413
xsd:extension MUST have an immediate child element 1414
xsd:attributeGroup. 1415

[Rationale] 1416

 This rule ensures that a CSC that is created as an immediate extension of a 1417
simple type adds the attributes required for specific NIEM linking mechanisms. 1418
This creates a pattern for CSC definition as follows: 1419

Example of CSC derived from a simple type 1420

<xsd:complexType name="PercentageType"> 1421
 ... 1422
 <xsd:simpleContent> 1423
 <xsd:extension base="nc:PercentageSimpleType"> 1424
 <xsd:attributeGroup ref="structures:SimpleObjectAttributeGroup"/> 1425
 </xsd:extension> 1426
 </xsd:simpleContent> 1427
</xsd:complexType> 1428

5.5.4. Complex Content (CCC) Restrictions 1429

Within a NIEM-conformant schema, a CCC can be created one of two ways: 1430

1. By extension of an existing complex type (CCC or CSC), or 1431

2. By extension of the type structure:ComplexObjectType 1432

Both of these methods use the element xsd:extension. 1433

[Rule 5-55] 1434

 Within a NIEM-conformant schema, the element xsd:complexContent MUST 1435
have as an immediate child the element xsd:extension. 1436

Rationale 1437

 NIEM does not support, as conformant, the use of complex type restriction. 1438
NIEM defines a language, in which specific content is allowed. It does not 1439
specify messages which forbid content. Such restrictions may be performed in 1440

NIEM NDR Draft Version 1.2 Page 38 of 126
August 7, 2007

non-conformant schemas, or within constraint schemas or other artifacts of 1441
constraint. 1442

 Note that use of the attribute base on xsd:extension is required by XML 1443
Schema. 1444

The xsd:extension element says that the type under definition is an extension of 1445
another type. That type must be limited to those used with NIEM. 1446

[Rule 5-56] 1447

 Within a NIEM-conformant schema, given an element xsd:complexContent 1448
with a child xsd:extension owning an attribute base, the attribute base 1449
MUST have a value that resolves to the name of one of 1450

1. the type structures:ComplexObjectType, or 1451

2. the type structures:MetadataType, or 1452

3. the type structures:AugmentationType, or 1453

4. a NIEM-conformant complex type. 1454

[Rationale] 1455

 This rule ensures that a CCC has well-defined ancestry. In turn, this ensures that 1456
every CCC has well-defined semantics. 1457

5.6. Additional Definitions And Declarations 1458

XML Schema provides a variety of ways to declare and define elements and attributes. 1459

5.6.1. Element Declarations 1460

Within NIEM-conformant schemas, elements may be declared as abstract. Element 1461
declarations must be at the top-level, as rules in other sections prohibit the use of local 1462
elements. Elements may be defined without a type, but any element declaration that has 1463
no type must be declared abstract by [Rule 5-9], which forbids anonymous type 1464
definitions. 1465

Within an element declaration, the attributes fixed, nillable, and 1466
substitutionGroup may be used as per the XML Schema specification. The attribute 1467
form is irrelevant to NIEM, as NIEM-conformant schemas may not contain local element 1468
definitions by [Rule 5-14]. 1469

Element uses (element declarations acting as particles) must reference top-level named 1470
elements. In an element use, NIEM allows any values for the XML Schema properties 1471
“max occurs” and “min occurs”. 1472

Based on a variety of user requirements, all elements in the NIEM 2.0 schemas are 1473
defined to allow a nil value. For example, the following XML instances are permitted in 1474
NIEM-conformant instances: 1475

<nc:ActivityDate></nc:ActivityDate> 1476

OR 1477

<nc:ActivityDate/> 1478

Nil value allowance or restriction is only significant to elements of non-textual types (e.g., 1479
dates and numerics), and elements of text types that have restricted value space (e.g., 1480
code). This is because an unrestricted text typed element always contains the empty 1481
string ("") in its value space. However, for numerics and restricted text type elements, 1482

NIEM NDR Draft Version 1.2 Page 39 of 126
August 7, 2007

NIEM allows users to tighten constraints as required in IEPDs by resetting 1483
nillable="false". 1484

5.6.2. Attribute Declarations 1485

Attribute declarations must be declared with a type by [Rule 5-10], which forbids 1486
anonymous type definitions for attributes. 1487

Within an attribute declaration, the attribute fixed may be used as per the XML Schema 1488
specification. Within an attribute declaration, the attribute form is irrelevant to NIEM, as 1489
NIEM-conformant schemas may not contain local attribute declarations. 1490

Attribute uses (attribute declarations acting as particles) must be uses of top-level named 1491
attributes. NIEM-conformant schemas may not define local named attributes within type 1492
definitions. Within an attribute use, the attributes fixed and use may be used as per 1493
the XML Schema specification. 1494

5.6.3. Attribute Group Definitions 1495

In NIEM conformant schemas, use of attribute groups is restricted. The only attribute 1496
group that plays a part in NIEM-conformant schemas is 1497
structures:SimpleObjectAttributeGroup. This attribute group provides the 1498
attributes necessary for IDs, metadata, and link metadata. 1499

[Rule 5-57] 1500

 Within a NIEM-conformant schema, any occurrence of the element 1501
xsd:attributeGroup MUST own an attribute ref. 1502

[Rationale] 1503

 The only attribute group used in NIEM-conformant schemas is 1504
structures:simpleObjectAttributeGroup. Therefore, NIEM-conformant 1505
schemas do not define additional attribute groups. 1506

[Rule 5-58] 1507

 Within a NIEM-conformant schema, the attribute ref owned by any element 1508
xsd:attributeGroup MUST have a value of a qualified name (possibly using 1509
the default namespace) that SHALL resolve to the namespace for the NIEM 1510
structures namespace and the local name 1511
SimpleObjectAttributeGroup. 1512

[Rationale] 1513

 The only attribute group used within NIEM-conformant schemas is 1514
structures:SimpleObjectAttributeGroup. Therefore, within a NIEM 1515
conformant schema, only this attribute group can be referenced. 1516

 1517

NIEM NDR Draft Version 1.2 Page 40 of 126
August 7, 2007

6. Modeling Rules 1518

NIEM provides a framework for modeling concepts and relationships as XML artifacts. 1519
The data model is implemented via XML Schema. However, XML Schema does not 1520
provide sufficient structure and constraint to enable translating from a conceptual model 1521
to a schema, and then to instances of the concepts. NIEM provides additional support for 1522
modeling concepts as schemas, and provides rules for creating and connecting data that 1523
realizes those concepts. 1524

[Definition: NIEM-conformant schema] 1525

 A NIEM-conformant schema is an XML document which follows the rules for 1526
NIEM-conformant schemas, as provided by this document. Any schema that 1527
follows all of the rules may be called NIEM-conformant. 1528

Underlying the NIEM data model are two namespaces: the structures namespace and 1529
the appinfo namespace. These two namespaces provide schema components that 1530
serve two functions: 1531

1. They provide support for connecting structural definitions to concepts 1532

2. They provide base components from which to derive structural definitions. 1533

These namespaces are distributed with the NIEM data model content, but are not 1534
themselves considered to be content of the data model. They are instead, part of the 1535
structure on which the data model is built. 1536

6.1. xsd:schema Document Element Restrictions 1537

[Rule 6-1] 1538

 Within a NIEM-conformant schema, the document element xsd:schema MUST 1539
have application information appinfo:ConformantIndicator, with text 1540
content "true". 1541

Rationale 1542

 The appinfo:ConformantIndicator element is how NIEM-conformant 1543
schemas indicate that they are, in fact NIEM-conformant. Without such an 1544
indicator, conformance would have to be "guessed" by readers and processors. 1545

[Rule 6-2] 1546

 Two XML schemas SHALL have the same value for attribute targetNamespace 1547
carried by the element xsd:schema if and only if they represent the same set of 1548
components. 1549

[Rule 6-3] 1550

 Two XML Schemas SHALL have the same value for attribute 1551
targetNamespace carried by the element xsd:schema, and different values 1552
for attribute version carried by the element xsd:schema if and only if they are 1553
different views of the same set of components. 1554

Rationale 1555

 These rules embody the basic philosophy behind NIEM's use of namespaced 1556
components: A component is uniquely identified by its class (e.g. element, 1557
attribute, type), its namespace (a URI), and its local name (an unqualified string). 1558
Any two matching component identifiers refer to the same component, even if the 1559
versions of the schemas containing each are different. 1560

NIEM NDR Draft Version 1.2 Page 41 of 126
August 7, 2007

6.2. Annotations 1561

NIEM-conformant schemas define data models for the purpose of information exchange. 1562
A major part of defining data models is the proper definition of the contents of the model. 1563
What does a component mean, and what might it contain? How should it be used? 1564
NIEM-conformant schemas contain the invariant part of the definitions for the data model. 1565
The set of definitions includes: 1566

1. A text definition of each component. This describes what the component means. 1567

2. The structural definition of each component. This is made up of XML Schema 1568
components. 1569

When possible, meaning is expressed via XML Schema mechanisms: type derivation, 1570
element substitution, specific types and structures, as well as names that are trivially 1571
parseable. Beyond that, NIEM-specific syntax must be used, as discussed in this 1572
section. 1573

6.2.1. Human-Readable Documentation 1574

By other rules, a schema component must contain at most one element 1575
xsd:annotation. An element xsd:annotation in turn must contain at most one 1576
element xsd:documentation. The content of the element xsd:documentation on a 1577
component is the definition for the component. 1578

[Rule 6-4] 1579

 Within a NIEM-conformant schema, any type definition MUST be a documented 1580
component. 1581

[Rule 6-5] 1582

 Within a NIEM-conformant schema, any element declaration MUST be a 1583
documented component. 1584

[Rule 6-6] 1585

 Within a NIEM-conformant schema, any attribute declaration MUST be a 1586
documented component. 1587

[Rule 6-7] 1588

 Within a NIEM-conformant schema, the element xsd:enumeration MUST be a 1589
documented component. 1590

[Rule 6-8] 1591

 Within a NIEM-conformant schema, the document element xsd:schema MUST 1592
be a documented component. 1593

Note that [Rule 4-4] applies [ISO 11179 Part 4] definition rules to documented 1594
components. 1595

[Rule 6-9] 1596

 Words or synonyms for the words within a data element definition MAY be reused 1597
as terms in the corresponding component name, if those words do not dilute the 1598
semantics and understanding of, or impart ambiguity to, the entity or concept that 1599
the component represents. 1600

[Rule 6-10] 1601

 An object class SHALL have one and only one associated semantic meaning (i.e. 1602
a single word sense.) as described in the definition of the component that 1603
represents that object class. 1604

NIEM NDR Draft Version 1.2 Page 42 of 126
August 7, 2007

[Rule 6-11] 1605

 An object class SHALL NOT be redefined within the definitions of the 1606
components that represent properties or subparts of that entity or class. 1607

Rationale 1608

 Data definitions should be concise, precise, and unambiguous without 1609
embedding additional definitions of data elements that have already been defined 1610
once elsewhere (such as object classes). [ISO 11179 Part 4] says that 1611
definitions should not be nested inside other definitions. Furthermore, a data 1612
dictionary is not a language dictionary. It is acceptable to reuse terms (object 1613
class, property term, and qualifier terms) from a component name within its 1614
corresponding definition to enhance clarity, as long as the requirements and 1615
recommendations of [ISO 11179 Part 4] are not violated. This further enhances 1616
brevity and precision. 1617

[Rule 6-12] 1618

 A NIEM data definition SHALL NOT contain explicit representational or data 1619
typing information such as number characters, type of characters, etc., unless 1620
the very nature of the component can only be described by such information. 1621

Rationale 1622

 A component definition is intended to describe semantic meaning only, not 1623
representation or structure. How a component with simple content is 1624
represented is indicated through the representation term and further refined 1625
through constraints. 1626

Example 1 1627

<xsd:element name="AngularMinuteValue" type="nc:AngularMinuteType" 1628
 nillable="true"> 1629
 <xsd:annotation> 1630
 <xsd:documentation> 1631
 A value that specifies a minute of a degree. The value comes 1632
 from a restricted range of 0 (inclusive) to 60 (exclusive). 1633
 </xsd:documentation> 1634
 </xsd:annotation> 1635
</xsd:element> 1636

In Example 1 above, the component definition contains representational information 1637
because the component is mathematical and therefore requires such. In Example 2 1638
below, the definition is incorrect and states unnecessary representational information 1639
about the data element. nc:PersonSSNIdentification is not a Social Security 1640
Number (SSN); it is a complex element (type nc:IdentificationType) that contains 1641
a SSN identifier as well as other properties that describe a person’s SSN identifier (such 1642
as issue date, issue authority, etc.). The phrase “9-digit” is incorrect and unnecessary 1643
because it only applies to the SSN identifier and should be applied as a length or pattern 1644
constraint on the identifier only. 1645

NIEM NDR Draft Version 1.2 Page 43 of 126
August 7, 2007

Example 2 1646

<xsd:element name="PersonSSNIdentification" type="nc:IdentificationType"> 1647
 <xsd:annotation> 1648
 <xsd:documentation> 1649
 A social security number that references a person; a 9-digit 1650
 numeric identifier assigned to a living person by the United 1651
 States Social Security Administration. 1652
 </xsd:documentation> 1653
 </xsd:annotation> 1654
</xsd:element> 1655

[Rule 6-13] 1656

 A component definition SHALL begin with a standard opening phrase that 1657
depends on the class of the component per Table 1: Standard Opening Phrases: 1658

Table 1: Standard Opening Phrases 1659
ThisComponent Class Definition opening phrase
Abstract "A data concept for a …"
Association "A relationship …"
Augmentation "Supplements …"
Entities and properties of such "A (An) …"
Indicator "True if …; false otherwise/if…"
Role "Acts as …"
Type "A data type for …"
Role "Acts as …"

Rationale 1660

 A standard opening phrase base on component class helps to ensure consistent 1661
definitions that appropriate for the type of component item being defined. These 1662
opening phrases also provide a cue that facilitates recognition of the particular 1663
kind of component. 1664

6.2.2. Machine-Readable Annotations 1665

XML Schema provides application information schema components to provide for 1666
automatic processing and machine-readable content for schemas. NIEM utilizes 1667
application information to convey information that is outside schema definition, and 1668
outside human-readable text definitions. NIEM uses application information to convey 1669
high-level data model concepts and additional syntax to support the NIEM conceptual 1670
model and validation of NIEM-conformant XML instances. 1671

NIEM defines a single namespace which holds components for use in NIEM-conformant 1672
schema application information. This namespace is referred to as the appinfo 1673
namespace. 1674

[Definition: appinfo namespace] 1675

 The appinfo namespace is the namespace represented by the URI 1676
"http://niem.gov/niem/appinfo/2.0". 1677

The appinfo namespace defines elements which provide additional semantics and 1678
syntactic guidelines for components built by NIEM schemas. 1679

[Rule 6-14] 1680

 A NIEM-conformant schema SHALL import the appinfo namespace. 1681

NIEM NDR Draft Version 1.2 Page 44 of 126
August 7, 2007

Rationale 1682

 For uniformity, all NIEM-conformant schemas must import the appinfo 1683
namespace. 1684

[Definition: application information] 1685

 A component is said to have application information of some element E when 1686
the root element that defines the component has an immediate child element 1687
xsd:annotation, which has an immediate child element xsd:appinfo, which 1688
has as an immediate child the element E. 1689

If a component is described as "having application information", this means that the 1690
application information elements under consideration are children of the element which 1691
defines the component. 1692

The majority of uses of application information from the appinfo namespace are 1693
described in the modeling rules for the specific component. 1694

6.2.2.1. Deprecation 1695

The appinfo schema provides a construct for indicating that a construct is deprecated. 1696
A deprecated component is one whose use is not recommended. A deprecated 1697
component is kept in a schema for support of older versions, but should not be used in 1698
new efforts. A deprecated component will be removed, replaced or renamed in a later 1699
edition of a schema. 1700

[Definition: deprecated component] 1701

 In a particular NIEM-conformant namespace, a deprecated component is one 1702
whose use is not recommended, yet which is maintained in the schema for 1703
compatibility with previous versions of the namespace. 1704

[Rule 6-15] 1705

 A component which is deprecated SHALL be indicated as such by the component 1706
having application information appinfo:Deprecated, with an attribute value 1707
with a value of true. 1708

Rationale 1709

 Deprecation can allow version management to be more consistent; versions of 1710
schema may be incrementally improved, without introducing validation problems 1711
and incompatibility. As XML Schema lacks a deprecation mechanism, NIEM 1712
defines such a mechanism. 1713

6.2.2.2. Indicating Conformance 1714

The element appinfo:ConformantIndicator is used for two purposes. 1715

1. To indicate that a schema is conformant, or that it represents a conformant 1716
namespace. 1717

2. To indicate that an imported schema is not conformant, or represents a non-1718
conformant namespace. 1719

The specific rules concerning this element appear in Section 6.1, xsd:schema 1720
Document Element Restrictions, and Section 6.6, Using External Schemas. 1721

6.2.2.3. Bases of Derived Components 1722

The appinfo namespace provides an annotation for indicating the base of a derived 1723
component. This is expressed via the appinfo:Base application information. 1724

NIEM NDR Draft Version 1.2 Page 45 of 126
August 7, 2007

[Rule 6-16] 1725

 Within a NIEM-conformant schema, the element appinfo:Base MAY be used 1726
in one of the following ways: 1727

1. By a type definition, to indicate the base type, or structures:Object 1728
or structures:Association, or 1729

2. By an element declaration, to indicate the base element 1730

 The element appinfo:Base SHALL NOT be used for any other purpose. 1731

Rationale 1732

 The appinfo:Base element is required to clarify semantics of types as object or 1733
association types, when such derivation is not otherwise derivable from the 1734
component definitions. 1735

[Rule 6-17] 1736

 Within a NIEM-conformant schema, the element appinfo:Base SHALL 1737
indicate, by namespace and name, one of the following: 1738

1. a NIEM-conformant schema component, or 1739

2. structures:Object, or 1740

3. structures:Association. 1741

[Rule 6-18] 1742

 Within a NIEM-conformation schema, an attribute appinfo:namespace owned 1743
by an element appinfo:Base SHALL have a value of either: 1744

1. a namespace which is the target namespace of a NIEM-conformant 1745
schema, or 1746

2. the structures namespace. 1747

[Rule 6-19] 1748

 Within a NIEM-conformant schema, an element appinfo:Base which does not 1749
own an attribute appinfo:namespace SHALL refer to the target namespace of 1750
the schema in which it is used. 1751

[Rule 6-20] 1752

 Within a NIEM-conformant schema, an element appinfo:Base SHALL own an 1753
attribute appinfo:name. 1754

[Rule 6-21] 1755

 Within a NIEM-conformant schema, if an element appinfo:Base indicates a 1756
NIEM-conformant namespace, then the value of the attribute appinfo:name 1757
owned by the element appinfo:Base SHALL indicate a schema component in 1758
the indicated namespace. 1759

[Rule 6-22] 1760

 Within a NIEM-conformant schema, if an element appinfo:Base indicates the 1761
structures namespace, then the value of the attribute appinfo:name owned by 1762
the element appinfo:Base SHALL have a value of one of: 1763

1. structures:Object, or 1764

2. structures:Association, or 1765

NIEM NDR Draft Version 1.2 Page 46 of 126
August 7, 2007

3. a schema component defined by the structures schema. 1766

Rationale 1767

 Together, this set of rules establishes the element appinfo:Base as a 1768
reference to either a NIEM-conformant schema component, or to a special NIEM 1769
component, which acts as the base for the containing schema component. . 1770

6.2.2.4. Application of Constructs 1771

NIEM schemas provide capability for modeling beyond that provided by basic XML 1772
Schema. Two methods made available by NIEM are augmentations and metadata. Both 1773
of these methods create schema components which may be applied to types in specific 1774
ways. The applicability of these components to types is expressed with the 1775
appinfo:AppliesTo element. 1776

[Rule 6-23] 1777

 Within a NIEM-conformant schema, the element appinfo:AppliesTo MAY be 1778
used in any of the following ways: 1779

1. To indicate a base type to which an augmentation may be applied 1780

2. To indicate a base type to which a metadata type may be applied 1781

 The element appinfo:AppliesTo SHALL NOT be used for any other purpose. 1782

Rationale 1783

 The appinfo:AppliesTo element is required to express constraints beyond 1784
those available within XML Schema. Use of this element allows advanced 1785
processing of instances and schemas for type-safety. 1786

[Rule 6-24] 1787

 Within a NIEM-conformant schema, the element appinfo:AppliesTo SHALL 1788
indicate a schema component, by namespace and name. 1789

[Rule 6-25] 1790

 Within a NIEM-conformation schema, an attribute appinfo:namespace owned 1791
by an element appinfo:AppliesTo SHALL indicate the namespace of the 1792
type to which appinfo:AppliesTo refers. The indicated namespace SHALL 1793
be NIEM-conformant. 1794

[Rule 6-26] 1795

 The type to which the attribute appinfo:appliesTo refers MUST be the 1796
indicated type or MUST be transitively derived from the indicated type. 1797

[Rule 6-27] 1798

 Within a NIEM-conformant schema, an element appinfo:AppliesTo which 1799
does not carry an attribute appinfo:namespace SHALL refer to the target 1800
namespace of the schema in which it is used. 1801

[Rule 6-28] 1802

 Within a NIEM-conformant schema, an element appinfo:AppliesTo SHALL 1803
carry an attribute appinfo:name. The value of this attribute SHALL indicate the 1804
local name of a schema component within the namespace specified by the 1805
element. 1806

NIEM NDR Draft Version 1.2 Page 47 of 126
August 7, 2007

Rationale 1807

 Together, this set of rules establishes the element appinfo:AppliesTo as a 1808
reference to a NIEM-conformant schema component to which a NIEM construct 1809
may be applied. 1810

6.2.2.5. Targets of References 1811

NIEM provides references, in order to avoid problems occurring when only XML element 1812
containment is available. The appinfo:ReferenceTarget element specifies the type 1813
to which a reference element may be applied. 1814

[Rule 6-29] 1815

 Within a NIEM-conformant schema, the element appinfo:ReferenceTarget 1816
SHALL specify the type of a schema component which an instance of a reference 1817
element references. The element appinfo:ReferenceTarget SHALL NOT 1818
be used for any other purpose. 1819

[Rule 6-30] 1820

 A reference element SHALL reference an instance of the indicated type, or an 1821
instance of a type derived from that type. 1822

Rationale 1823

 The element appinfo:ReferenceTarget is required to express the type of 1824
referenced content. This level of type-safety is not provided by XML Schema. 1825

[Rule 6-30.1] 1826

 Within a NIEM-conformant schema, a reference element MUST have at most one 1827
instance of the element appinfo:ReferenceTarget. 1828

Rationale 1829

 Content elements in XML Schema may have at most one type. This rule ensures 1830
that reference elements follow the same pattern. 1831

[Rule 6-31] 1832

 Within a NIEM-conformant schema, the element appinfo:ReferenceTarget 1833
SHALL indicate a type definition schema component, by namespace and name. 1834

[Rule 6-32] 1835

 Within a NIEM-conformation schema, an attribute appinfo:namespace carried 1836
by an element appinfo:ReferenceTarget SHALL indicate the namespace of 1837
the referenced schema component. The indicated namespace SHALL be NIEM-1838
conformant. 1839

[Rule 6-33] 1840

 Within a NIEM-conformant schema, an element appinfo:ReferenceTarget 1841
which does not carry an attribute appinfo:namespace SHALL refer to the 1842
target namespace of the schema in which it is used. 1843

[Rule 6-34] 1844

 Within a NIEM-conformant schema, an element appinfo:ReferenceTarget 1845
SHALL carry an attribute appinfo:name. The value of this attribute SHALL 1846
indicate the local name of a type definition schema component within the 1847
namespace specified by the element. 1848

NIEM NDR Draft Version 1.2 Page 48 of 126
August 7, 2007

Rationale 1849

 Together, this set of rules establishes the element appinfo:ReferenceTarget 1850
as a reference to a NIEM-conformant type definition schema component which a 1851
reference element instance may reference. 1852

6.3. Complex Type Definitions 1853

Under XML Schema rules, a CCC (complex type with complex content) may not be the 1854
base type of a CSC (complex type with simple content), and a CSC may not be a base 1855
for a CCC. Therefore, NIEM defines one pattern for defining a CCC, and a different 1856
pattern for defining a CSC. These patterns supply common base definitions that will be 1857
provided for CSCs and CCCs. These patterns are established by the rules for use of 1858
xsd:extension in xsd:complexContent and xsd:simpleContent elements. The 1859
relevant rules may be found in Sections 5.5.3, Simple Content (CSC) Restrictions, and 1860
5.5.4, Complex Content (CCC) Restrictions. 1861

[Rule 6-35] 1862

 Within a NIEM-conformant schema, a complex type definition SHALL be one of 1863
the following classes of types: 1864

1. An object type 1865

2. A role type 1866

3. An association type 1867

4. A metadata type 1868

5. An augmentation type 1869

6. An adapter type. 1870

Rationale 1871

 This rule establishes the classes of NIEM complex types. It is a limited set, each 1872
class with distinct semantics. 1873

The first five types are described in subsections below. The adapter type is described in 1874
Section 6.6, Using External Schemas. 1875

[Rule 6-36] 1876

 Within a NIEM-conformant schema, an element MUST NOT be introduced more 1877
than once into the direct content of a type definition. This applies to content 1878
acquired through extension of base types. This does not apply to a base 1879
element or derived element to one previously existing in the type definition. 1880

Rationale 1881

 This rule ensures that sequences of elements are simple sequences. A type 1882
should not define, for example, a sequence of elements A, B, then A again. 1883
Definitions should define, instead, what elements may be included, and their 1884
cardinality. Specific orders should be expressed in instances, when necessary, 1885
by the use of the attribute structures:sequenceID. 1886

6.3.1. Object Types 1887

[Definition: object type] 1888

 In a NIEM-conformant schema, an object type is a complex type definition, an 1889
instance of which asserts the existence of an object. An object type represents 1890
some kind of object: a thing with its own lifespan that has some existence. The 1891
object may or may not be a physical object. It may be a conceptual object. 1892

NIEM NDR Draft Version 1.2 Page 49 of 126
August 7, 2007

[Rule 6-37] 1893

 Within a NIEM-conformant schema, an object type SHALL be a complex type 1894
definition that has one of the following forms: 1895

1. Has simple content, is based on a simple type, and contains the attribute 1896
group structures:SimpleObjectAttributeGroup, and has 1897
application information appinfo:Base of structures:Object, or 1898

2. Has complex content, and is based on complex type 1899
structures:ComplexObjectType, and has application information 1900
appinfo:Base of structures:Object, or 1901

3. Is a complex type that is derived from an object type, which is defined 1902
according to this rule. 1903

Rationale 1904

 Object types are at the core of NIEM. They are built in a uniform way, from a 1905
simple design pattern: they take one of the two "root" forms outlined above, or 1906
they are built from other object types, depending on whether they are of simple or 1907
complex content. 1908

6.3.2. Role Types 1909

NIEM differentiates between an object and a role of the object. The term "role" is used 1910
here to mean a function or part played by some object. 1911

[Definition: role type] 1912

 A role type is a type that represents a particular function, purpose, usage, or role 1913
of an object. 1914

The simplest way to represent a role of an object is to use an element. The following 1915
example represents the role of a person who performs an assessment: 1916

<xsd:element name="AssessmentPerson" type="nc:PersonType"/> 1917

In many cases, there is a further need to represent characteristics and additional 1918
information associated with a role of an object. In such cases, the above element is 1919
insufficient. For example, when a person is a driver involved in a automotive crash, the 1920
person plays the role of a j:CrashDriver. In the case of a crash, there is more 1921
information associated with the role of the driver than just his identity for the role. One 1922
such example would be the traffic violation code, j:CrashDriverViolationCode is 1923
frequently a characteristic property of a j:CrashDriver. For this reason, a role type, 1924
j:CrashDriverType is created. 1925

A role type provides the location for information associated with an object playing a role. 1926
A role type is used instead of the base type (in this case, nc:PersonType). The role 1927
type holds information specific to the role, but not specific to the context or the base 1928
object (the object that plays the role). Developers of NIEM-conformant schemas should 1929
create and use role types whenever they have non-persistent information specific to a 1930
base object. Such information generally expires when the base object is no longer 1931
playing the role. Information that is persistent to the base object probably does not 1932
belong in a role type. 1933

[Definition: RoleOf element 1934

 In a NIEM-conformant schema, a RoleOf element is a reference element whose 1935
type is the base type of the role. 1936

NIEM NDR Draft Version 1.2 Page 50 of 126
August 7, 2007

Here is an example of a role type from the NIEM Justice domain which uses a RoleOf 1937
element: 1938

<xsd:complexType name="CrashPersonType"> 1939
 ... 1940
 <xsd:sequence> 1941
 <xsd:element ref="nc:RoleOfPersonReference" minOccurs="0" 1942
 maxOccurs="unbounded"/> 1943
 ... 1944
 <xsd:element ref="j:CrashPersonInjury" minOccurs="0" 1945
 maxOccurs="unbounded"/> 1946
 ... 1947
 <xsd:element ref="j:AlcoholTestResultCode" minOccurs="0" 1948
 maxOccurs="unbounded"/> 1949
 ... 1950
 </xsd:sequence> 1951
 ... 1952
</xsd:complexType> 1953

nc:RoleOfPersonReference is defined as “An entity of whom the role object is a 1954
function.” In this example, the role object is j:CrashPersonType and the base type of 1955
the role object is a nc:PersonType, the entity of whom j:CrashPersonType is a 1956
function (per the definition above). 1957

This role object represents a particular role of a person: a person involved in a vehicular 1958
crash. It refers to the person of whom this object is a role through the 1959
nc:RoleOfPersonReference element. It also includes additional information 1960
particular to the person's role in the crash. 1961

[Rule 6-38] 1962

 Within a NIEM-conformant schema, any element with a name beginning with the 1963
string RoleOf SHALL represent a base type, of which the containing type 1964
represents a role. 1965

Rationale 1966

 A “RoleOf” element references its corresponding base element. The “RoleOf” 1967
label on the reference element ensures that a role object is distinguishable from 1968
other objects and its link to the associated base is also distinguishable from the 1969
additional properties that are characteristic of this role or that add information. 1970

NIEM does not require that there be only one RoleOf element within a single type. 1971
However, the use of multiple RoleOf elements may not make sense, and indeed, an 1972
example of a role that references two or more base types is very difficult (if not 1973
impossible) to conceive. 1974

An object should be a role of only a single object. However, there may be varied 1975
assertions of what object that might be, or time constraints on the role. Many exchanges 1976
may wish to restrict RoleOf elements to a single occurrence within a type. 1977

Role elements are generally reference elements, targeting the base type. That is, a role 1978
element is usually a reference element, not a content element. 1979

6.3.3. Association Types 1980

Within NIEM, an association is a specific relationship between objects. Associations are 1981
used when a simple NIEM property is insufficient to model the relationship clearly and 1982
when properties of the relationship exist that are not attributable to the objects being 1983
related. 1984

NIEM NDR Draft Version 1.2 Page 51 of 126
August 7, 2007

[Definition: association type] 1985

 In a NIEM-conformant schema, an association type is a type which establishes 1986
a relationship between objects, along with the properties of that relationship. An 1987
association type provides a structure which does not establish existence of an 1988
object, but instead specifies relationships between objects. 1989

[Definition: association] 1990

 In a NIEM-conformant schema, an association is an element whose type is a 1991
association type. 1992

[Rule 6-39] 1993

 Within a NIEM-conformant schema, an association type SHALL be a complex 1994
type definition that has one of the following forms: 1995

1. Has complex content, is based on the complex type 1996
structures:ComplexObjectType, and has application information 1997
appinfo:Base of structures:Association, or 1998

2. Is a complex type that is derived from an association type, which is 1999
defined according to this rule. 2000

Rationale 2001

 Associations are easily identifiable as such, and have a commonly-defined base 2002
type. 2003

[Rule 6-40] 2004

 Within a NIEM-conformant schema, in an association type, any element which 2005
represents a participant in the relationship established by the association type 2006
SHALL be a reference element. 2007

Rationale 2008

 Associations are intended to relate objects defined elsewhere. They are not 2009
intended to carry content of participant objects. 2010

6.3.4. Metadata Types 2011

Within NIEM, metadata is defined as “data about data.” This may include information 2012
such as the security of a piece of data, or source of the data. These pieces of metadata 2013
may be composed into a metadata type. The types of data to which metadata may be 2014
applied may be constrained. 2015

[Definition: metadata type] 2016

 A metadata type describes data about data, that is, information which is not 2017
descriptive of objects and their relationships, but is descriptive of the data itself. 2018
It is useful to provide a general mechanism for data about data. This provides 2019
required flexibility to precisely represent information. 2020

[Definition: metadata element] 2021

 Within a NIEM-conformant schema, a metadata element is an element whose 2022
type is a metadata type. There are specific limitations on the meaning of a 2023
metadata element in an instance; it does not establish existence of an object, nor 2024
is it a property of its containing object. 2025

[Rule 6-41] 2026

 Within a NIEM-conformant schema, a metadata type SHALL contain elements 2027
appropriate for a specific class of data about data. 2028

NIEM NDR Draft Version 1.2 Page 52 of 126
August 7, 2007

[Rule 6-42] 2029

 Within a NIEM-conformant schema, a metadata type and only a metadata type 2030
SHALL be derived directly from structures:MetadataType. 2031

Rationale 2032

 A metadata type establishes a specific, named aggregation of data about data. 2033
Any type derived from structures:MetadataType is a metadata type. 2034
Metadata types should not be derived from other metadata types. Such 2035
metadata types should be used as-is, and additional metadata types defined for 2036
additional content. 2037

[Rule 6-43] 2038

 Within a NIEM-conformant schema, a metadata type MAY have application 2039
information appinfo:AppliesTo, indicating the NIEM-conformant object, 2040
association, or external adapter types to which the metadata applies. 2041

[Rule 6-44] 2042

 Within a NIEM-conformant schema, a metadata type which does not have 2043
application information appinfo:AppliesTo MAY be applied to any object 2044
type, association type, or external adapter type. 2045

Rationale 2046

 Metadata may be constrained to be applicable to only specific types, or it may be 2047
defined to be applicable to any type. Information such as the source of a piece of 2048
data, or the security classification of a piece of data are examples of metadata 2049
that may be considered globally applicable. 2050

6.3.5. Augmentation Types 2051

Builders of domains and extensions to NIEM distribution schemas need to be able to 2052
define extensions to types. However, extension of types by multiple domain schemas 2053
and extension schemas proves problematic, as it results in multiple extensions of a single 2054
type. XML Schema does not provide for multiple types of an instance, and so such a 2055
method results in duplication of base type content, and a need to resolve "same-as" 2056
relationships between the instances of the various derived types. 2057

Instead, it is preferable for domains and extensions to provide augmentations. These are 2058
reusable types, and elements of those types, which may be added to an object class, in a 2059
single extended type, by the author of a NIEM-conformant schema. This avoids the 2060
problem of multiple extended types, but allows domains and extensions to define 2061
reusable extensions. 2062

Augmentation types such as dom:PersonAugmentationType (where dom: is a NIEM 2063
domain namespace) exist to extend NIEM Core types such as nc:PersonType without 2064
creating a new specialized object within the model. Augmentation types are never 2065
applied within the model to the types they are designed to augment. Doing so would 2066
restrict reusing and combining these augmentations. 2067

Instead, augmentation should be applied within IEPDs. So, in an IEPD (NOT within 2068
NIEM), base nc:PersonType may be extended, for example, as my-2069
iepd:PersonType by adding elements a:PersonAugmentation and 2070
b:PersonAugmentation. As a result, my-iepd:PersonType will contain all the 2071
properties in nc:PersonType plus the properties in both of the elements 2072
a:PersonAugmentation and b:PersonAugmentation, which, in turn, each contain 2073
their respective sets of sub-elements. 2074

NIEM NDR Draft Version 1.2 Page 53 of 126
August 7, 2007

All NIEM augmentation types extend the abstract type 2075
structures:AugmentationType. Therefore, all augmentation types automatically 2076
contain the attributes structures:id and structures:metadata for referencing 2077
and metadata respectively. NIEM also provides the abstract element 2078
structures:Augmentation (of type structures:AugmentationType) as the 2079
common substitution group head for all augmentation elements. An augmentation 2080
element placed into this substitution group can be used in an instance wherever 2081
structures:Augmentation occurs in the corresponding IEPD schema. The user 2082
must follow NIEM naming conventions for augmentation component names, and must 2083
place new augmentation elements into the structures:Augmentation substitution 2084
group. Furthermore, if an augmentation element cannot be applied to all types in the 2085
model, then the user must document those types that the new augmentation element can 2086
be applied to using the appinfo:AppliesTo element. 2087

[Definition: augmentation type] 2088

 An augmentation type is a complex type which provides a reusable block of 2089
data which may be added to object types or association types. 2090

 [Definition: augmentation] 2091

 An augmentation of a NIEM-conformant object type is a block of additional data 2092
added to an object type, in order to carry additional data beyond that of the 2093
original object definition. 2094

[Rule 6-45] 2095

 An augmentation type: 2096

1. SHALL be transitively derived from structures:AugmentationType 2097
and 2098

2. SHALL contain elements which represent properties to be applied to a 2099
base type. 2100

Rationale 2101

 A base type is the type to which an augmentation is to be applied. An 2102
augmentation may be applied to any number of types. Base types are assigned 2103
by augmentation elements. 2104

[Rule 6-46] 2105

 Within a NIEM-conformant schema, an augmentation element definition: 2106

1. SHALL have a type which is an augmentation type 2107

2. SHALL use the substitutionGroup attribute such that it is transitively 2108
substitutable for the element structures:Augmentation 2109

 An element which is not an augmentation element SHALL NOT meet either of the 2110
above criteria. 2111

Rationale 2112

 An augmentation is trivially identifiable as such. The use of the common 2113
structures:Augmentation element allows message builders to optionally 2114
delay specifying augmentations to be applied to a type until runtime. 2115

[Rule 6-47] 2116

 Within a NIEM-conformant schema, an element definition for an augmentation 2117
element MAY contain one or more instances of the element 2118

NIEM NDR Draft Version 1.2 Page 54 of 126
August 7, 2007

structures:AppliesTo as application information, to specify types to which 2119
the augmentation element applies. 2120

[Rule 6-48] 2121

 Within a NIEM-conformant schema, an element definition for an augmentation 2122
element which does not contain any instances of the element 2123
structures:AppliesTo MAY be applied to any object or association type. 2124

Rationale 2125

 These rules allow schema builders to establish applicability for augmentations. 2126
An augmentation may be applicable to specific types. 2127

 Users who wish to apply an augmentation type to a given object type may do so 2128
by creating a new augmentation element, applicable to the object type. 2129

6.4. Component Usage 2130

[Rule 6-49] 2131

 Any type definition referenced by a component within a NIEM-conformant 2132
schema MUST be from one of the following: 2133

1. The schema being defined 2134

2. A namespace imported as NIEM-conformant 2135

3. The XML Schema namespace 2136

4. The structures namespace. 2137

Rationale 2138

 NIEM-conformant schemas are based on other NIEM-conformant schemas, and 2139
the supporting namespaces. This simplifies processing and understanding of 2140
data. 2141

[Rule 6-50] 2142

 Any element declaration referenced by a component within a NIEM-conformant 2143
schema MUST be from one of the following: 2144

1. The schema being defined 2145

2. A namespace imported as NIEM-conformant 2146

3. The structures namespace 2147

4. An external namespace, in accordance with the rules for external 2148
schemas as specified by this specification. 2149

[Rule 6-51] 2150

 Any attribute declaration referenced by a component within a NIEM-conformant 2151
schema MUST be from one of the following: 2152

1. The schema being defined 2153

2. A namespace imported as NIEM-conformant 2154

3. The structures namespace 2155

4. The XML namespace 2156

5. An external namespace, in accordance with the rules for external 2157
schemas as specified by this specification. 2158

NIEM NDR Draft Version 1.2 Page 55 of 126
August 7, 2007

Rationale 2159

 NIEM-conformant schemas are based on other NIEM-conformant schemas. All 2160
attributes and elements must be from NIEM-conformant schemas, the 2161
structures namespace, the XML namespace, or an external namespace. This 2162
applies to elements referenced for substitution groups, as well. It does not apply 2163
to content of the schema (e.g. within annotations), or to the XML Schema 2164
declarations themselves. It applies only to attributes and elements referenced by 2165
the XML Schema components. 2166

6.5. NIEM Structural Facilities 2167

NIEM provides the structures schema which contains base types for types defined in 2168
NIEM-conformant schemas. It provides base elements to act as heads for substitution 2169
groups. It also provides attributes that provide facilities not otherwise provided by XML 2170
Schema. These structures should be used to augment XML data. The structures 2171
provided are not meant to replace fundamental XML organization methods; they are 2172
intended to assist them. 2173

[Definition: structures namespace] 2174

 The structures namespace is the namespace represented by the URI 2175
"http://niem.gov/niem/structures/2.0". 2176

The structures namespace is a single namespace, separate from namespaces that define 2177
NIEM-conformant data. This document refers to this content via the prefix structures. 2178

[Rule 6-52] 2179

 A NIEM-conformant schema MUST import the NIEM structures namespace. 2180

Rationale 2181

 For uniformity, all NIEM-conformant schemas must import the structures 2182
namespace. 2183

[Rule 6-53] 2184

 NIEM-conformant schemas and instances MUST use content within the NIEM 2185
structures namespace as specified in this document and ONLY as specified by 2186
this document. 2187

Rationale 2188

 This rule further enforces uniformity and consistency by mandating use of the 2189
NIEM structures namespace as is, without modification. Users are not allowed to 2190
insert types, attributes, etc. that are not specified by this document (the NDR). 2191

6.5.1. Sequence ID 2192

NIEM provides the attribute structures:sequenceID for specification of sequential 2193
order of instances, when a complex type's defined element sequence is insufficient. A 2194
limitation of XML Schema is that control of cardinality (the number of times an element 2195
may occur in an instance) requires the use of sequences of elements. This use of 2196
xsd:sequence defines the elements occurring within a type in a specific order. This 2197
order may not match the desired sequential order of the represented entities. 2198

An example would be for proper names, where the natural order of the names may not 2199
appear in the same order as the sequence defined by a complex type. Consider the 2200
example: 2201

• One address represents the postal code before the city name 2202

• Another address represents the city name before the postal code 2203

NIEM NDR Draft Version 1.2 Page 56 of 126
August 7, 2007

• The address structure must be defined in exactly one way 2204

Without the structures:sequenceID attribute, this example would create a dilemma: 2205
which address to represent properly, and which to represent incorrectly? The 2206
structures:sequenceID attribute allows the schema sequence to be separated from 2207
the implied meaning. 2208

As another example, when using a derived type, within an instance, the base type's 2209
elements occur first, followed by any elements added by extension. If those elements 2210
need to be interleaved into the existing structure for the proper meaning to be conveyed, 2211
the structures:sequenceID attribute is called for. 2212

The structures:sequenceID attribute allows instances to express the sequential 2213
order of data relative to a parent. The order of data is as yielded by XSLT's xsl:sort 2214
element, with data-type of xsl:number, and order of ascending. Content with 2215
identical structures:sequenceID values has undefined order. 2216

[Rule 6-54] 2217

 Within a NIEM-conformant schema, a complex type definition SHALL include the 2218
attribute structures:sequenceID if the order of an occurrence of the type, 2219
within its parent, relative to its siblings, is meaningful and pertinent, and if the 2220
content presented by all instances defined by the schema will not otherwise 2221
occur in the desired sequential order. 2222

Rationale 2223

 This rule indicates that, if order is meaningful, and the schema won't always 2224
represent the desired order, then data modelers need to include sequenceID to 2225
allow the proper order to be represented in instances. 2226

Use of sequenceID is restricted by are found in the rules on conformant instances in 2227
Section 7.4, Component Ordering. 2228

6.5.2. Reference Elements 2229

In XML instances, relationships between data objects are expressed as XML elements: 2230

1. Data objects are expressed as XML elements, and 2231

2. XML elements contain attributes and other elements. 2232

In this way, there is generally some implicit relationship between the outer element (the 2233
"containing" element, a.k.a. the parent element) and the inner elements (the "contained" 2234
elements, a.k.a. the child elements). Such expression of relationships is said to be by 2235
containment. 2236

Expression of all relationships via element containment is not always possible. Situations 2237
that cause problems include: 2238

• Circular relationships. For example, suppose Object1 has a relationship to 2239
Object2 and Object2 has a relationship to Object1. Expressed via containment, 2240
this relationship would result in infinite recursive descent. 2241

• Repeated relationships. For example, suppose Object1 has a relationship to 2242
Object2 and Object3 has a relationship to Object2. Expressed via containment, 2243
this would result in a duplicate of Object2. 2244

A method that solves this problem is to use references. In a C or assembler, a pointer 2245
would be used. In C++, a reference might be used. In Java, a reference value might be 2246
used. The method defined by the XML standard is the use of ID and IDREF. An ID 2247
refers to an IDREF. NIEM uses this method, and assigns to it specific semantics. 2248

NIEM NDR Draft Version 1.2 Page 57 of 126
August 7, 2007

[Definition: reference element] 2249

 A reference element is an element that refers to its value by a reference 2250
attribute, instead of carrying it as content. 2251

[Rule 6-55] 2252

 Within a NIEM-conformant schema, a reference element and only a reference 2253
element SHALL be defined to be of type structures:ReferenceType. 2254

Rationale 2255

 Reference elements must be of the reference type, and elements of the 2256
reference type must be reference elements. This rule ensures that users always 2257
create reference elements using structures:ReferenceType, and cannot 2258
use structures:ReferenceType for any other purpose. 2259

[Rule 6-56] 2260

 Within a NIEM-conformant schema, a complex type SHALL NOT be defined such 2261
that an instance of that type owns the attribute structures:ref. 2262

Rationale 2263

 The use of references is limited to reference elements. This constrains the 2264
semantics and syntax of references within NIEM instances. Only 2265
structures:ReferenceType may use structures:ref, which is the only 2266
means for referencing within NIEM-conformant instances. 2267

[Rule 6-57] 2268

 Within a NIEM-conformant schema, any two elements of the form 2269

 NCName 2270

 and 2271

 NCNameReference 2272

 where the string value of NCName is the same in both forms, SHALL be defined 2273
to have identical semantics. The NIEM recognizes no difference in meaning 2274
between a reference element and an element that is not a reference element. 2275

Rationale 2276

 NIEM-conformant data instances may use concrete data elements and reference 2277
elements as needed, to represent the meaning of the fundamental data. There is 2278
no difference in meaning between reference or concrete data representations. 2279
The two different methods are available for ease of representation. No difference 2280
in meaning should be implied by the use of one method or the other. 2281

 Assertions that indicate "included" data is intrinsic, while referenced data is 2282
extrinsic are not valid and are not applicable to NIEM-conformant data instances 2283
and data definitions. 2284

[Rule 6-58] 2285

 Within a NIEM-conformant schema, if both elements NCName and 2286
NCNameReference exist, then the appinfo:ReferenceTarget of any 2287
NCNameReference element MUST be the type of the element NCName. 2288

Rationale 2289

 By [Rule 6-57], any such pair of elements, NCName and NCNameReference, 2290
will have identical semantics. This rule ensures that a NCNameReference 2291

NIEM NDR Draft Version 1.2 Page 58 of 126
August 7, 2007

element is documented to refer to the appropriate type (the type of the 2292
corresponding NCName element) and no other. 2293

The NIEM structures schema defines structures:ReferenceType to require the use 2294
of an attribute structures:ref, which is of type IDREF as specified by 2295
[XMLSchemaStructures]. According to the rules of XML, such an attribute must contain 2296
a value that is represented by an attribute of type ID. In NIEM-conformant instance, the 2297
targets of IDREFs are expected to be values of the attribute structures:id. 2298

The NIEM structures schema defines structures:ReferenceType such that it is 2299
unavailable as a base for extension or restriction. 2300

The NIEM structures schema defines structures:ReferenceType such that it has an 2301
optional attribute structures:id. This may be used to describe additional metadata or 2302
information about the relationship described by an element of type 2303
structures:ReferenceType. 2304

Within a NIEM-conformant instance, the element referenced by an attribute 2305
structures:ref must be of a type valid for the object of the fundamental element of 2306
the reference element. The attribute structures:ref is discussed in more detail in 2307
Section 7.3. 2308

6.6. Using External Schemas 2309

There are a variety of commonly-used standards that are represented in XML Schema. 2310
Such schemas are generally not NIEM-conformant. NIEM-conformant schemas may 2311
reference components defined by these external schemas. NIEM-conformant 2312
components may be constructed from non-NIEM schema components. 2313

 [Definition: external schema] 2314

 An external schema is any non-supporting schema that is not NIEM-conformant. 2315

Note that the supporting schemas structures and appinfo are non-conformant 2316
because they define the fundamental framework on which NIEM is built. However, they 2317
are not considered external schemas because of their supporting nature, and are thus 2318
excluded from this definition. 2319

NIEM-conformant schemas may work with external schemas by creating external adapter 2320
types. 2321

A single method is used to integrate external components into NIEM-conformant 2322
schemas: NIEM-conformant types are constructed from the external components. 2323

NIEM NDR Draft Version 1.2 Page 59 of 126
August 7, 2007

Use of external components to create a NIEM-conformant type 2324

 2325

Components defined by external schemas are called external components. External 2326
components may be used by a NIEM-conformant type in a specific way: to construct a 2327
NIEM-conformant type from external components. The goal in this method is to preserve 2328
as a single unit a set of data that embodies a single concept from an external standard. 2329

For example, a NIEM-conformant type may be created to represent a bibliographic 2330
reference from an external standard. Such an object may be composed of multiple 2331
elements and types from the external standard. These pieces are put together to form a 2332
single NIEM-conformant type. For example, an element representing an author, a book, 2333
and a publisher may be included in a single bibliographic entry. 2334

A NIEM-conformant type built from these components may be used as any other NIEM-2335
conformant type. That is, elements may be constructed from such a type, and those 2336
elements are fully NIEM-conformant. 2337

To construct such a component, a NIEM-conformant schema must first import an external 2338
schema. 2339

[Rule 6-59] 2340

 Within a NIEM-conformant schema, an element xsd:import that imports a 2341
namespace defined by an external schema MUST have the application 2342
information appinfo:ConformantIndicator, with a value of false. 2343

Rationale 2344

 Knowledge of the conformance of an imported schema allows processors to 2345
understand the semantics of referenced components, without additional 2346
processing. Namespaces imported into NIEM-conformant schemas are 2347
assumed to be conformant, unless otherwise indicated. 2348

[Rule 6-60] 2349

 Within a NIEM-conformant schema, an element xsd:import that imports a 2350
namespace defined by an external schema MUST be a documented component. 2351

Rationale 2352

 A NIEM-conformant schema has well-known documentation points. Therefore, a 2353
schema that imports a NIEM-conformant namespace need not provide additional 2354
documentation. However, when an external schema is imported, appropriate 2355
documentation must be provided at the point of import, because documentation 2356

External namespaceNIEM-
conformant

element

NIEM-
conformant

type

NIEM-
conformant

element

NIEM-
conformant

element

of-type

of-type

of-type

element

model group

attribute group

attribute

simple type

complex type

containscontains

External
adapter

type

NIEM NDR Draft Version 1.2 Page 60 of 126
August 7, 2007

associated with external schemas is undefined and variable. In this particular 2357
case, documentation of external schemas is required at their point of use in 2358
NIEM. 2359

[Definition: adapter type] 2360

 An adapter type is a NIEM-conformant type that adapts external components for 2361
use within NIEM. An adapter type creates a new class of object that embodies a 2362
single concept composed of external components. An adapter type is defined by 2363
a NIEM-conformant schema. 2364

[Rule 6-61] 2365

 Within a NIEM-conformant schema, an adapter type MUST have application 2366
information appinfo:ExternalAdapterTypeIndicator with a value of 2367
true. A type that is not an adapter type SHALL NOT contain that indicator. 2368

Rationale 2369

 This rule flags as external adapters those types which may contain external 2370
content. This allows for easier processing. 2371

[Rule 6-62] 2372

 Within a NIEM-conformant schema, an adapter type MUST be a immediate 2373
extension of type structures:ComplexObjectType. 2374

Rationale 2375

 The adapter type must contain the content defined for any NIEM component. 2376
Such content is provided by the complex object type from the structures 2377
namespace. 2378

[Rule 6-63] 2379

 Within a NIEM-conformant schema, an adapter type MUST be composed of only 2380
elements and attributes from an external standard. 2381

Rationale 2382

 An adapter type should contain the information from an external standard to 2383
express a complete concept. This expression should be composed of content 2384
entirely from an external schema. Most likely, the external schema will be based 2385
on an external standard, with its own legacy support. 2386

In the case of an external expression that is in the form of model groups, attribute groups, 2387
or types, additional elements and type components may be created in an external 2388
schema, and those components may be used by the adapter type. 2389

[Rule 6-64] 2390

 Within a NIEM-conformant schema, an element reference used in an adapter 2391
type definition MUST be a documented component. 2392

[Rule 6-65] 2393

 Within a NIEM-conformant schema, an attribute reference used in an adapter 2394
type definition MUST be a documented component. 2395

Rationale 2396

 In normal (conformant) type definition, a reference to an attribute or element is a 2397
reference to a documented component. Within an adapter type, the references 2398
to the attributes and elements being adapted are references to undocumented 2399
components. These components must be documented to provide 2400
comprehensibility and interoperability. Since documentation made available by 2401

NIEM NDR Draft Version 1.2 Page 61 of 126
August 7, 2007

non-conformant schemas is undefined and variable, documentation of these 2402
components is required at their point of use, within the conformant schema. 2403

[Rule 6-66] 2404

 Within a NIEM-conformant schema, an adapter type MUST NOT be extended or 2405
restricted. 2406

Rationale 2407

 Adapter types are meant to stand alone; each type expresses a single concept 2408
from an external schema, and adapter types are maintained in separate schemas 2409
which only contain adapter types. In this way, processors may easily switch 2410
modes, processing NIEM-conformant content in one way, and external content in 2411
another. 2412

6.7. Container Elements 2413

All NIEM properties establish a relationship between the object holding the property and 2414
the value of the property. For example, an activity object of type nc:ActivityType 2415
may have an element nc:ActivityDescriptionText. This element will be of type 2416
nc:TextType and represents a NIEM property owned by that activity object. An 2417
occurrence of this element within an activity object establishes a relationship between the 2418
activity object and the text: the text is the description of the activity. 2419

In a NIEM-conformant instance, an element establishes a relationship between the object 2420
that contains it and the element’s value. This relationship between the object and the 2421
element may be semantically-strong, such as the text description of an activity in the 2422
previous example, or it may be semantically-weak, with its exact meaning left unstated. 2423
In NIEM, the contained element involved in a weakly-defined semantic relationship is 2424
commonly referred to as a container element. 2425

A container element establishes a weakly-defined relationship with its containing element. 2426
For example, an object of type nc:ItemDispositionType may have a container 2427
element nc:Item of type nc:ItemType. The container element nc:Item does not 2428
establish what relationship exists between the object of nc:ItemDispositionType 2429
and itself. There could be any of a number of possible semantics between an object and 2430
the value of a container element - It could be a contained object, a subpart, a 2431
characteristic, or some other relationship. The appearance of this container element 2432
inside the nc:ItemDispositionType merely establishes that the disposition has an 2433
item. 2434

The name of the container element is usually based on the NIEM type that defines it: 2435
nc:PersonType uses a container element nc:Person, while nc:ActivityType uses 2436
a container element nc:Activity. The concept of an element as a container element 2437
is a notional one. 2438

There are no formalized rules addressing what makes up a container element. A 2439
container element is vaguely defined, and carries very little semantics about its context 2440
and its contents. Accordingly, there is no formal definition of container elements in NIEM: 2441
There are no specific artifacts which define a container element; there are no appinfo or 2442
other labels for container elements. 2443

The appearance of a container element within a NIEM type carries no additional 2444
semantics about the relationship between the property and the containing type. Use of 2445
container elements indicate only that there is a relationship, but does not provide any 2446
semantics for interpreting that relationship. 2447

For example, a NIEM container element nc:Person would be associated with the NIEM 2448
type nc:PersonType. The use of the NIEM container element nc:Person in a 2449

NIEM NDR Draft Version 1.2 Page 62 of 126
August 7, 2007

containing NIEM type indicates that a person has some association with the instances of 2450
the containing NIEM type. But because the nc:Person container element is used, there 2451
is no additional meaning about the association of the person and the instance containing 2452
it. While there is a person associated with the instance, nothing is known about the 2453
relationship except its existence. 2454

The use of the Person container element is in contrast to a NIEM property named 2455
nc:AssessmentPerson, also of NIEM type nc:PersonType. When the NIEM 2456
property nc:AssessmentPerson is contained within an instance of a NIEM type, it is 2457
clear that the person referenced by this property was responsible for an assessment of 2458
some type, relevant to the exchange being modeled. The more descriptive name, 2459
nc:AssessmentPerson, gives more information about the relationship of the person 2460
with the containing instance, as compared to the semantic-free implications associated 2461
with use of the nc:Person container element. 2462

When a NIEM-conformant schema requires a new container element, it may define a new 2463
element with a concrete type and a general name, with general semantics. Any schema 2464
may define a container element when it requires one. NIEM-conformant schemas may 2465
also create reference elements with general semantics. For example, an element 2466
nc:PersonReference will carry the same general, container-like meaning as an 2467
element nc:Person. 2468

 2469

NIEM NDR Draft Version 1.2 Page 63 of 126
August 7, 2007

7. XML Instance Rules 2470

This specification attempts to restrict XML instance data as little as possible, while still 2471
maintaining interoperability. 2472

[Definition: NIEM-conformant document] 2473

 A NIEM-conformant document is an XML information set whose document 2474
element is defined by a NIEM-conformant schema, and which follows the rules 2475
for conformant element information items as specified by this document. 2476

 The terms "XML information set", "document element", and "element information 2477
item" come from [XMLInfoSet]. This definition says that any XML instance 2478
whose document element is a conformant element instance is a NIEM-2479
conformant document. The word document is meant only as used in 2480
[XMLInfoSet]. 2481

[Definition: NIEM-conformant element instance] 2482

 A NIEM-conformant element instance is an XML information item which is 2483
defined by a NIEM-conformant schema, and which follows the rules for 2484
conformant instance data as specified by this document. 2485

 XML data may be referred to as a NIEM-conformant instance if it conforms to this 2486
specification. 2487

The NIEM does not require a specific encoding, or specific requirements for the XML 2488
prologue, except as specified by [XML]. 2489

7.1. Instance Validation 2490

[Rule 7-1] 2491

 A NIEM-conformant instance MUST validate to an authoritative NIEM-conformant 2492
schema set for namespaces contained in the instance, and for additional 2493
namespaces required for validation. 2494

Rationale 2495

 The schemas which define the exchange must be authoritative. That is, they 2496
must be the reference schema for the namespaces concerned. Other schemas 2497
may be used by application developers for various purposes, but for the 2498
purposes of determining conformance, the authoritative schemas are relevant. 2499

NIEM embraces the use of XML schema instance attributes, including xsi:type, 2500
xsi:nil, and xsi:schemaLocation, as specified by [XMLSchemaStructures]. 2501

7.2. Instance Meaning 2502

[Rule 7-2] 2503

 Within a NIEM-conformant instance, the meaning of an element with no content 2504
is that additional properties are not asserted. There SHALL NOT be additional 2505
meaning interpreted for an element with no content. 2506

Rationale 2507

 Elements without content only show a lack of asserted information. That is, data 2508
which is not there is not stated. It may be due to lack of availability, lack of 2509
knowledge, or deliberate withholding of information. If expression of such cases 2510
is required, it should be modeled explicitly. 2511

NIEM NDR Draft Version 1.2 Page 64 of 126
August 7, 2007

7.3. Component Representation 2512

NIEM uses element containment for the majority of its data representation needs. That 2513
is, an element containing another element. In general, one object (the content of the 2514
outer element) has a relationship (defined by the name of the inner element) to another 2515
object (the content of the inner element). 2516

Example of element containment 2517

<OuterElement> 2518
 <!-- object1: the content of outer element --> 2519
 <InnerElement> 2520
 <!-- object2: the content of inner element --> 2521
 </InnerElement> 2522
 <!-- object1, continued --> 2523
</OuterElement> 2524

This use of the element containment method has limitations. Specifically, recursive and 2525
symmetric relationships (direct or transitive) create difficulties, such as repetition of data, 2526
and resolution of duplicates. 2527

To avoid these problems, NIEM allows references between elements. In this way, one 2528
object (the content of one element) has a relationship (defined by the name of the inner 2529
element) to another object (the content of an element referenced by an attribute of the 2530
inner element). 2531

Example of element reference 2532

<OuterElement> 2533
 <!-- object1: the content of outer element --> 2534
 <InnerElementReference structures:ref="object2"/> 2535
 <!-- object1, continued --> 2536
</OuterElement> 2537
 2538
<OtherElement structures:id="object2"> 2539
 <!-- object2: the content of other element --> 2540
</OtherElement> 2541

[Rule 7-3] 2542

 Within a NIEM-conformant element instance, there SHALL NOT be any 2543
difference in meaning between a property asserted via element containment and 2544
a property asserted by element reference, except as explicitly described by the 2545
semantics of the elements involved. 2546

Rationale 2547

 There is no difference in meaning between relationships established by 2548
containment, and those established by reference. They are simply two 2549
mechanisms for expressing connections between objects. Neither mechanism 2550
implies that properties are intrinsic or extrinsic. Such characteristics must be 2551
explicitly stated in property definitions. 2552

Being of type xsd:ID and xsd:IDREF, validating schema parsers will perform certain 2553
checks on the values of structures:id and structures:ref. Specifically, no two 2554
IDs may have the same value. This includes structures:id and other IDs that may 2555
be used in an instance. Also, any value of structures:ref must also appear as the 2556
value of an ID. 2557

NIEM NDR Draft Version 1.2 Page 65 of 126
August 7, 2007

[Rule 7-4] 2558

 Any attribute structures:ref MUST have a value which occurs as the value 2559
of an attribute structures:id within the same information set. 2560

Rationale 2561

 This states that in NIEM-conformant content, structures:ref attributes must 2562
refer to structures:id attributes. This rule ensures that the target of a 2563
reference exists within the same XML instance. 2564

Reference element definitions may include constraints on the type of object which may 2565
be referenced by that element. 2566

[Rule 7-5] 2567

 Within a NIEM-conformant element instance, given that a reference element is 2568
restricted to a set S of target types Ti, S = { T1, T2, ..., Tn}, any attribute 2569
structures:ref MUST indicate the value of an attribute structures:id 2570
which is owned by an element of a type T such that T is, or is derived from, some 2571
type Ti in S. 2572

Rationale 2573

 This rule says that the type of the object pointed to by an structures:ref 2574
attribute must be of a type specified by the reference element definition. The 2575
restriction of types is defined in the application information of the reference 2576
element definition by the use of the appinfo:ReferenceTarget attribute. 2577

7.4. Component Ordering 2578

An instance may express the natural order of components by using the order of content 2579
within an XML file. It may also use the structures:sequenceID to indicate the order 2580
of components. 2581

[Rule 7-6] 2582

 The order of elements that are children of a NIEM-conformant element SHALL be 2583
presented as if their sequential order is as follows: 2584

1. First, elements owning an attribute structures:sequenceID, in the 2585
order that would be yielded with their sequence IDs sorted via XSLT's 2586
sort element, with a data type of number and an order of ascending. 2587

2. Following those elements, the remaining elements, in the order in which 2588
they occur within the XML instance. 2589

Rationale 2590

 Because of NIEM's use of structured, defined types, and its use of 2591
xsd:sequence, as well as various representation mechanisms, the order of 2592
data within an XML instance may require more precise definition, and may vary 2593
from instance to instance. The true order of objects (such as parts of a name, or 2594
lines in an address, or parts of a phone number) may need an explicit method to 2595
define their order. 2596

 In this definition, the term "presented" may mean presentation to the user, 2597
reports, or transfer to other data systems. It is meaningful only when the order of 2598
appearance of items within a sequence is expressed. Such an order is only the 2599
default for the content within an instance. It may be overruled by any meaningful 2600
sorting or other processing. 2601

NIEM NDR Draft Version 1.2 Page 66 of 126
August 7, 2007

[Rule 7-7] 2602

 Within a NIEM-conformant schema or instance, the attribute 2603
structures:sequenceID SHALL NOT be interpreted as meaningful beyond 2604
an indicator of sequential order of an object relative to its siblings. 2605

Rationale 2606

 Siblings of a data item are items that have the same parent. Note that, using the 2607
reference and relationships mechanisms, data objects may have multiple 2608
parents. The sequenceID is truly metadata, helping to express the structure of 2609
the data, rather than its content. 2610

Note that reference elements have the same semantics as concrete data elements, and 2611
so follow the same rules for sequential order. By using reference elements, an entity may 2612
have one order within one structure, and another order within another structure. 2613

Within NIEM-conformant instances, the order of objects is found be given by sorting the 2614
objects by numerical value of their respective attribute structures:sequenceID, from 2615
smallest to highest. The relative order of objects with equal values for 2616
structures:sequenceID is their order within the XML instance. Objects with no value 2617
for structures:sequenceID occur after all objects that have values for 2618
structures:sequenceID, in their relative order within the XML instance. 2619

The use of instance-based sequencing, including the use of structures:sequenceID, 2620
is preferred over efforts to sequence data definitions. For example, the use of "address 2621
line 1", "address line 2", "address line 3", etc, is not recommended. Instead, a single 2622
"address line" would be preferred, with order expressed in the XML instance. 2623

7.5. Instance Metadata 2624

NIEM provides the metadata mechanism for giving information about object assertions. 2625
An object may have an attribute which refers to one or more metadata objects. 2626

Example of metadata 2627

<Person> 2628
 <PersonName> 2629
 <PersonGivenName structures:metadata="M1">John</PersonGivenName> 2630
 <PersonGivenName structures:metadata="M2">Jack</PersonGivenName> 2631
 <PersonSurName structures:metadata="M1 M2">Smith</PersonSurName> 2632
 </PersonName> 2633
 <PersonBirthDate>1945-12-01</PersonBirthDate> 2634
</Person> 2635
<Metadata structures:id="M1"><SourceText>Adam Barber</SourceText></Metadata> 2636
<Metadata structures:id="M2"><SourceText>Charles 2637
Daniels</SourceText></Metadata> 2638

This example shows a person. In this example, Adam Barber says the person is John 2639
Smith. Charles Daniels says his name is Jack Smith. A source for the person's birth date 2640
is not given. 2641

This shows several characteristics of metadata: 2642

1. Metadata objects may appear outside the data they describe 2643

2. Metadata objects may be reused 2644

3. Data may refer to more than one metadata object 2645

NIEM NDR Draft Version 1.2 Page 67 of 126
August 7, 2007

[Rule 7-8] 2646

 Within a NIEM-conformant element instance, when an object O links to a 2647
metadata object via an attribute structures:metadata, the information in the 2648
metadata object SHALL be applied to the object O. 2649

[Rule 7-9] 2650

 Within a NIEM-conformant element instance, when an object O1 contains an 2651
element E, with content object O2, and O2 links to a metadata object via an 2652
attribute structures:linkMetadata, the information in the metadata object 2653
SHALL be applied to the relationship E between O1 and O2. 2654

Rationale 2655

 These two rules define the meaning of metadata: 2656

• structures:metadata applies metadata to an object. 2657

• structures:linkMetadata applies metadata to a relationship 2658
between two objects. 2659

[Rule 7-10] 2660

 Within a NIEM-conformant element instance, each IDREF contained in the value 2661
of an attribute structures:metadata MUST refer to an attribute 2662
structures:id owned by an instance of a metadata type in the same 2663
information set. 2664

[Rule 7-11] 2665

 Within a NIEM-conformant element instance, each IDREF contained in the value 2666
of an attribute structures:linkMetadata MUST refer to an attribute 2667
structures:id owned by an instance of a metadata type in the same 2668
information set. 2669

Rationale 2670

 All structures:metadata and structures:linkMetadata attributes must 2671
refer to metadata objects. 2672

[Rule 7-12] 2673

 Within a set of NIEM-conformant element instances within an information set, 2674
any metadata element instance referred to from an element instance of some 2675
type T MUST be applicable to an object type T. 2676

Rationale 2677

 The applicability is determined by structures:AppliesTo application 2678
information of the metadata type definition. The instances must correspond to 2679
the types specified by the metadata type definition. 2680

NIEM NDR Draft Version 1.2 Page 68 of 126
August 7, 2007

8. Naming Rules 2681

This section outlines the rules used to create names for NIEM data components 2682
previously discussed in this document. Data component names must be understood 2683
easily both by humans and by machine processes. These rules improve name 2684
consistency by restricting characters, terms, and syntax that could otherwise allow too 2685
much variety and potential ambiguity. These rules also improve readability of names for 2686
humans, facilitate parsing of individual terms that compose names, and support various 2687
automated tasks associated with dictionary and controlled vocabulary maintenance. 2688

8.1. Extension of XSD Namespace Simple Types 2689

[Rule 8-0.9] 2690

 Within a NIEM-conformant schema, a complex type that is a direct extension of 2691
an XML Schema namespace simple type MAY use the same local name as the 2692
simple type, if and only if the extension adds no content other than the attribute 2693
group structures:SimpleObjectAttributeGroup. 2694

Rationale 2695

 It is useful to build complex type bases for further extension. The NIEM 2696
distribution proxy schema xsd.xsd provides complex type bases for some of the 2697
simple types in the XML Schema namespace. However, the complex types in 2698
this proxy schema reuse the local names of the simple types they extend, even 2699
though the simple type names may not be NIEM-conformant. Requiring name 2700
changes for those NIEM-provided complex type bases would work against user 2701
understanding, for those already familiar with the names of the XML Schema 2702
namespace simple types being extended. 2703

8.2. Usage of English 2704

[Rule 8-1] 2705

 The name of any XML Schema component defined by NIEM-conformant 2706
schemas SHALL be composed of words from the English language, using the 2707
prevalent U.S. spelling, as provided by [OED]. 2708

Rationale 2709

 The English language has many spelling variations for the same word. For 2710
example, American English “program” has a corresponding British spelling 2711
“programme.” This variation has the potential to cause interoperability problems 2712
when exchanging XML components because of the different names used by the 2713
same elements. Providing a dictionary standard for spelling will mitigate this 2714
potential interoperability issue. 2715

8.3. Characters in Names 2716

[Rule 8-2] 2717

 The name of any XML Schema component defined by a NIEM-conformant 2718
schema SHALL contain only the following characters: 2719

• upper-case letters ('A'-'Z'), 2720

• lower-case letters ('a'-'z'), 2721

• digits ('0'-'9'), and 2722

• hyphen ('-'). 2723

NIEM NDR Draft Version 1.2 Page 69 of 126
August 7, 2007

 Other characters, such as the underscore ('_') character and the period ('.') 2724
character SHALL NOT appear in component names in NIEM-conformant 2725
schemas. 2726

[Rule 8-3] 2727

 The hyphen character ('-') MAY appear in component names only when used as 2728
a separator between parts of a single word, phrase, or value, that would 2729
otherwise be incomprehensible without the use of a separator. 2730

Rationale 2731

 Names of standards and specifications, in particular, tend to consist of series of 2732
discrete numbers. Such names require some explicit separator, to keep the 2733
values from running together. The separator used within NIEM is the hyphen. 2734

Names of NIEM components follow the rules of XML Schema, by [Rule 4-3]. NIEM 2735
components also must follow the rules specified for each type of XML Schema 2736
component. 2737

8.4. Character Case 2738

[Rule 8-4] 2739

 Within a NIEM-conformant schema, any attribute declaration SHALL have a 2740
name that begins with a lower-case letter ('a'-'z'). 2741

[Rule 8-5] 2742

 Within a NIEM-conformant schema, any XML Schema component other than an 2743
attribute declaration SHALL have a name that begins with an upper-case letter 2744
('A'-'Z'). 2745

Camel case is the practice of writing compound words or phrases in which the words are 2746
joined without spaces and are capitalized within the compound words. 2 2747

[Rule 8-6] 2748

 The name of any XML Schema component defined by a NIEM-conformant 2749
schema SHALL use the camel case formatting convention. 2750

Rationale 2751

 The foregoing rules establish lowerCamelCase for all NIEM components that are 2752
XML attributes, and UpperCamelCase for all NIEM components that are types, 2753
elements, or groups. 2754

8.5. Use of Acronyms and Abbreviations 2755

Acronyms and abbreviations have the ability to improve readability and comprehensibility 2756
of large, complex, or frequently-used terms. They also obscure meaning and impair 2757
understanding when their definition is not clear, or when they are used injudiciously. 2758
They should be used with great care. Acronyms and abbreviations that are used must be 2759
documented, and used consistently. 2760

[Rule 8-7] 2761

 A NIEM-conformant schema MUST consistently use approved acronyms, 2762
abbreviations, and word truncations within defined names. The approved 2763
shortened forms are defined in Table 2: Abbreviations used in NIEM Core Names 2764
. 2765

2 Adapted from http://en.wikipedia.org/wiki/Camel_case

NIEM NDR Draft Version 1.2 Page 70 of 126
August 7, 2007

Table 2: Abbreviations used in NIEM Core Names 2766
Abbreviation Full Meaning
ANSI American National Standards Institute
CMV Commercial Motor Vehicle
DEA Drug Enforcement Agency
DNA Deoxyribonucleic Acid
FGI Foreign Government Information
FIPS Federal Information Processing Standard
IC Intelligence Community
ID Identifier
IP Internet Protocol
ISO International Standards Organization
LIS NCIC code list for license state
LSTA NCIC code list for state/country index
MCO Manufacturer's Certificate of Origin
MGRS Military Grid Reference System
MSRP Manufacturer's Suggested Retail Price
NANP North American Numbering Plan
NCIC National Crime Information Center
NCTC National Counter Terrorist Center
NIBRS National Incident Based Reporting System
NLETS The International Justice & Public Safety

Information Sharing Network (formerly known as
the National Law Enforcement Teletype System)

ORI Organization Identifier (Orion)
RES NCIC code list for registration state for boat

registrations
RF Radio Frequency
SIM Subscriber Identity Module
SSN Social Security Number
TYP NCIC code list for gun type
TYPO NCIC code list for ORI type
URI Uniform Resource Identifier
US United States
UTM Universal Transverse Mercator
VIN Vehicle Identification Number
VINA Vehicle Identification Number Analysis

Rationale 2767

 Consistent, controlled, and documented abridged terms that are used frequently 2768
and/or tend to be lengthy can support readability, clarity, and reduction of name 2769
length. 2770

8.6. Word Forms 2771

[Rule 8-8] 2772

 A noun used as a term in a NIEM component MUST be used in singular form, 2773
unless the concept itself is plural. 2774

NIEM NDR Draft Version 1.2 Page 71 of 126
August 7, 2007

[Rule 8-9] 2775

 A verb used as a term in a NIEM component MUST be used in the present tense, 2776
unless the concept itself is past tense. 2777

[Rule 8-10] 2778

 Articles, conjunctions and prepositions SHALL NOT be used in NIEM component 2779
names, except where they are required for clarity or by standard convention 2780
(e.g.; PowerOfAttorneyCode). 2781

Rationale 2782

 Articles (e.g., a, an, the), conjunctions (e.g., and, or, but), and prepositions (e.g., 2783
at, by, for, from, in, of, to) are all disallowed in NIEM component names. These 2784
rules constrain slight variations in word forms and types to improve consistency 2785
and reduce potentially ambiguous or confusing component names. 2786

8.7. Name Generation 2787

Elements in NIEM-conformant schemas are given names that follow a specific pattern. 2788
This pattern comes from [ISO 11179 Part 5]. 2789

[Rule 8-11] 2790

 Except as specified elsewhere in this document, any element or attribute defined 2791
within a NIEM-conformant schema SHALL have a name which takes the form: 2792

• object class qualifier terms (0 or more) 2793

• an object class term (1) 2794

• property qualifier terms (0 or more) 2795

• a property term (1) 2796

• representation qualifier terms (0 or more) 2797

• a representation term (1). 2798

Rationale 2799

 Consistent naming rules are helpful for users who wish to understand 2800
components with which they are unfamiliar, as well as for users to find 2801
components with known semantics. This rule establishes the basic structure for 2802
an element or attribute name, in line with the rules for names under [ISO 11179 2803
Part 5]. 2804

8.8. Object Class Term 2805

The NIEM adopts an object-oriented approach to representation of data. Object classes 2806
represent what [ISO 11179 Part 5] refers to as “things of interest in a universe of 2807
discourse that may be found in a model of that universe.” An object class or object term 2808
is a word that represents a class of real-world entities or concepts. An object class term 2809
describes the applicable context for a NIEM component. 2810

[Rule 8-12] 2811

 The object class term of a NIEM component SHALL consist of a term identifying 2812
a category of concrete concepts or entities. 2813

Rationale 2814

 The object class term indicates the object category which this data component 2815
describes or represents. This term provides valuable context and narrows the 2816
scope of the component to an actual class of things or concepts. 2817

NIEM NDR Draft Version 1.2 Page 72 of 126
August 7, 2007

Example 2818

 Concept term: Activity 2819

 Entity term: Vehicle 2820

8.9. Property Term 2821

Objects or concepts are usually described in terms of their characteristic properties, data 2822
attributes, or constituent subparts. Most objects can be described by several 2823
characteristics. Therefore, a property term in the name of a data component represents a 2824
characteristic or subpart of an object class, and generally describes the essence of that 2825
data component. 2826

[Rule 8-13] 2827

 A property term SHALL describe or represent a characteristic or subpart of an 2828
entity or concept. 2829

Rationale 2830

 The property term describes the central meaning of the data component. 2831

8.10. Qualifier Terms 2832

Qualifier terms modify object, property, representation, or other qualifier terms in order to 2833
increase semantic precision and reduce ambiguity. Qualifier terms may precede or 2834
succeed the terms they modify. The goal for the placement of qualifier terms is to 2835
generally follow the rules of ordinary English while maintaining clarity. 2836

[Rule 8-14] 2837

 Multiple qualifier terms MAY be used within a component name as necessary to 2838
ensure clarity and uniqueness within its namespace and usage context. 2839

[Rule 8-15] 2840

 The number of qualifier terms SHOULD be limited to the absolute minimum 2841
required to make the component name unique and understandable. 2842

[Rule 8-16] 2843

 The order of qualifiers SHALL NOT be used to differentiate names. 2844

Rationale 2845

 Very large vocabularies may have many similar and closely related properties 2846
and concepts. The use of object, property, and representation terms alone is 2847
often not sufficient to construct meaningful names that can uniquely distinguish 2848
such components. Qualifier terms provide additional context to resolve these 2849
subtleties. However, swapping the order of qualifiers rarely (if ever) changes 2850
meaning; qualifier ordering is no substitute for meaningful terms. 2851

8.11. Representation Term 2852

 The representation term for a component name serves several purposes in NIEM: 2853

1. It can indicate the style of component. For example, types are clearly labeled 2854
with the representation term Type. 2855

2. It helps prevent name conflicts and confusion. For example, elements and types 2856
may not be given the same name. 2857

NIEM NDR Draft Version 1.2 Page 73 of 126
August 7, 2007

3. It indicates the nature of the value carried by element. Labeling elements and 2858
attributes with a notional indicator of the content eases discovery and 2859
comprehension. 2860

[Rule 8-17] 2861

 If any word in the representation term is redundant with any word in the property 2862
term, one occurrence SHOULD be deleted. 2863

The valid value set of a data element or value domain is described by the representation 2864
term. NIEM uses a standard set of representation terms in the representation portion of a 2865
NIEM-conformant component name. Table 3: Representation Terms lists the primary 2866
representation terms and a definition for the concept associated with the use of that term. 2867
The table also lists secondary representation terms that may represent more specific 2868
uses of the concept associated with the primary representation term. 2869

Table 3: Representation Terms 2870
Primary Representation
Term

Secondary
Representation Term

Definition

Amount - A number of monetary units
specified in a currency where the
unit of currency is explicit or
implied.

BinaryObject - A set of finite-length sequences
of binary octets.

 Graphic A diagram, graph, mathematical
curves, or similar representation

 Picture A visual representation of a
person, object, or scene

 Sound A representation for audio

 Video A motion picture representation;
may include audio encoded
within

Code A character string (letters,
figures or symbols) that for
brevity, language independence,
or precision, represents a
definitive value of an attribute.

DateTime A particular point in the
progression of time together with
relevant supplementary
information.

 Date A particular day, month, and year
in the Gregorian calendar.

Time A particular point in the
progression of time within an
unspecified 24 hour day.

ID

 A character string to identify and
distinguish uniquely, one
instance of an object in an
identification scheme from all
other objects in the same
scheme together with relevant
supplementary information.

NIEM NDR Draft Version 1.2 Page 74 of 126
August 7, 2007

 URI A string of characters used to
identify (or name) a resource.
The main purpose of this
identifier is to enable interaction
with representations of the
resource over a network,
typically the World Wide Web,
using specific protocols. A URI
is either a Uniform Resource
Locator (URL) or a Uniform
Resource Name (URN). The
specific syntax for each is
defined by [RFC3986].

Indicator A list of two mutually exclusive
Boolean values that express the
only possible states of a
property.

Measure A numeric value determined by
measuring an object along with
the specified unit of measure.

Numeric Numeric information that is
assigned or is determined by
calculation, counting, or
sequencing. It does not require a
unit of quantity or unit of
measure.

 Value A result of a calculation

 Rate A representation of a ratio where
the two units are not included.

 Percent A representation of a ratio in
which the two units are the
same.

Quantity A counted number of non-
monetary units possibly including
fractions.

Text - A character string (i.e. a finite
sequence of characters)
generally in the form of words of
a language.

 Name A word or phrase that constitutes
the distinctive designation of a
person, place, thing or concept.

[Rule 8-18] 2871

 Within a NIEM-conformant schema, the name of an element declaration that is of 2872
simple content MUST use a representation term found in Table 3: Representation 2873
Terms. 2874

[Rule 8-19] 2875

 Within a NIEM-conformant schema, the name of an element declaration that is of 2876
complex content, and which corresponds to a concept listed in Table 3: 2877
Representation Terms, MUST use a representation term from that table. 2878

[Rule 8-20] 2879

NIEM NDR Draft Version 1.2 Page 75 of 126
August 7, 2007

 Within a NIEM-conformant schema, the name of an element declaration which is 2880
of complex content and which does not correspond to a concept listed in Table 3: 2881
Representation Terms, MUST NOT use a representation term from that table. 2882

[Rule 8-21] 2883

 Within a NIEM-conformant schema, the name of an attribute declaration MUST 2884
use a representation term from Table 3: Representation Terms. 2885

Rationale 2886

 An element which represents a value listed in the table should have a 2887
representation term. It should do so even if its type is complex with multiple parts. 2888
For example, a type with multiple fields may represent a sound binary, or a date, 2889
or a name. 2890

8.12. NIEM Type Names 2891

This section contains naming rules specific to various kinds of NIEM types. 2892

8.12.1. All Type Components 2893

[Rule 8-22] 2894

 Within a NIEM-conformant schema, the name of any type definition MUST use 2895
the representation term Type. 2896

Rationale 2897

 Using the representation term Type immediately identifies XML types in a NIEM-2898
conformant schema and prevents naming collisions with corresponding XML 2899
elements and attributes. 2900

8.12.2. Simple Type Components 2901

[Rule 8-23] 2902

 Within a NIEM-conformant schema, the name of any simple type definition 2903
SHALL use the representation term qualifier Simple. This qualifier SHALL 2904
appear after any other representation term qualifiers. 2905

Rationale 2906

 Specific uses of type definitions have similar syntax, but very different effects on 2907
data definitions. Schemas that clearly identify complex and simple type 2908
definitions are easier to understand without tool support. This rule ensures that 2909
names of simple types end in SimpleType. 2910

8.12.3. Code Type Components 2911

[Definition: code type] 2912

 A code type is a simple type schema component definition which contains 2913
multiple xsd:enumeration facets. 2914

These types represent lists of values, each of which has a known meaning beyond the 2915
text representation. These values may be meaningful text or may be a string of 2916
alphanumeric identifiers which represent abbreviations for literals. 2917

[Rule 8-24] 2918

 Within a NIEM-conformant schema, the name of any code type SHALL use the 2919
representation term qualifier Code. 2920

NIEM NDR Draft Version 1.2 Page 76 of 126
August 7, 2007

Rationale 2921

 Using the qualifier Code (i.e. CodeType, CodeSimpleType) immediately 2922
identifies a type as representing a fixed list of codes. These types may be 2923
handled in specific ways, as lists of codes are expected to have their own 2924
lifecycles, including versions and periodic updates. Codes may also have 2925
responsible authorities behind them, who provide concrete semantic bindings for 2926
the code values. 2927

[Rule 8-25] 2928

 Within a NIEM-conformant schema, any type definition which has a base type 2929
definition of a code type or which is transitively based on a code type SHALL 2930
have a name which uses the representation term qualifier Code. 2931

Rationale 2932

 This expands the use of the representation term qualifier Code to any type based 2933
on a code list. 2934

8.12.4. Association Type Components 2935

[Rule 8-26] 2936

 Within a NIEM-conformant schema, any association type SHALL have a name 2937
that uses the representation term qualifier Association. Types other than 2938
association types SHALL NOT use the representation term qualifier 2939
Association. 2940

Rationale 2941

 Using the qualifier Association immediately identifies a type as representing 2942
an association. 2943

8.12.5. Augmentation Type Components 2944

[Rule 8-27] 2945

 Within a NIEM-conformant schema, any augmentation type SHALL have a name 2946
that uses the representation term qualifier Augmentation. Types other than 2947
augmentation types SHALL NOT use the representation term qualifier 2948
Augmentation. 2949

Rationale 2950

 Using the qualifier Augmentation immediately identifies a type as representing 2951
an augmentation. 2952

8.12.6. Metadata Type Components 2953

[Rule 8-28] 2954

 Within a NIEM-conformant schema, any metadata type SHALL have a name that 2955
uses the representation term qualifier Metadata. Types other than metadata 2956
types SHALL NOT use the representation term qualifier Metadata. 2957

Rationale 2958

 Using the qualifier Metadata immediately identifies a type as representing 2959
metadata. 2960

8.13. NIEM Property Names 2961

This section contains naming rules specific to different kinds of NIEM properties. 2962

NIEM NDR Draft Version 1.2 Page 77 of 126
August 7, 2007

8.13.1. Attribute Group Names 2963

[Rule 8-29] 2964

 Within a NIEM-conformant schema, the name of any attribute group definition 2965
schema component SHALL use the representation term AttributeGroup. 2966

Rationale 2967

 This clearly identifies attribute groups, and partitions their names from the names 2968
of other types of schema components. 2969

8.13.2. Reference Names 2970

[Rule 8-30] 2971

 Within a NIEM-conformant schema, the name of any reference element SHALL 2972
use the representation term suffix Reference. 2973

Rationale 2974

 Reference elements are identical in semantics to elements that are not by-2975
reference. However, they refer to their values by a reference attribute, instead of 2976
carrying it as content of the XML element. The use of a suffix helps indicate that 2977
the elements refer to, instead of contain, their values, yet allows the basic 2978
semantics (e.g. property, representation term) to persist. 2979

 Note that the use of the representation term suffix is one of the situations in 2980
which there is a slight divergence from the general rule for name generation as 2981
discussed in [Rule 8-11]. 2982

8.13.3. Association Names 2983

[Rule 8-31] 2984

 Within a NIEM-conformant schema, the name of an association element SHALL 2985
use the representation term qualifier Association. 2986

Rationale 2987

 Using the qualifier Association immediately identifies an element as 2988
representing an association. 2989

8.13.4. Augmentation Names 2990

[Rule 8-32] 2991

 Within a NIEM-conformant schema, the name of an augmentation element 2992
SHALL use the representation term Augmentation. 2993

Rationale 2994

 Using the qualifier Augmentation immediately identifies an element as 2995
representing an augmentation. 2996

8.13.5. Metadata Names 2997

[Rule 8-33] 2998

 Within a NIEM-conformant schema, the name of a metadata element SHALL use 2999
the representation term Metadata. 3000

NIEM NDR Draft Version 1.2 Page 78 of 126
August 7, 2007

Rationale 3001

 Using the qualifier Metadata immediately identifies an element as representing 3002
metadata. 3003

8.13.6. Role Names 3004

[Rule 8-34] 3005

 Within a NIEM-conformant schema, the name of a role SHALL use the property 3006
term RoleOf. 3007

Rationale 3008

 Using the property term RoleOf immediately identifies an element as 3009
representing a role. 3010

NIEM NDR Draft Version 1.2 Page 79 of 126
August 7, 2007

Appendix A. NIEM Overview 3011

The NIEM is a reference model of unconstrained components rendered in XML Schema. 3012
Associated with the NIEM schemas is an XML reference architecture that organizes and 3013
guides the employment of the various kinds of schemas that compose a NIEM 3014
information exchange. The XML reference architecture describes the relationships 3015
between XML schemas for NIEM Information Exchange Package Documentation (IEPD). 3016

Figure 1: The NIEM XML Reference Architecture 3017

 3018

A NIEM IEPD is a set of artifacts that describe an Information Exchange Package (IEP), a 3019
standard message structure as defined by the Federal Enterprise Architecture 3020
Consolidated Reference Model Document [CRM]. The NIEM IEPD Specification [IEPD] 3021
contains a more detailed explanation of IEPDs and their contents. 3022

The following kinds of XML schemas are associated with the NIEM reference architecture 3023

• NIEM reference schemas: Schemas containing content created or approved by 3024
the NIEM steering committees are periodically released in schema distributions. 3025
The structure and content of such distributions are not specified in this document. 3026
This document specifies rules that apply to the NIEM-conformant schemas that 3027
are released as part of such distributions. 3028

• NIEM support schemas: NIEM includes two special schemas, the appinfo and 3029
the structures schemas, for annotating and structuring NIEM-conformant 3030
schemas. 3031

• Extension Schema: a NIEM-conformant schema which adds domain- or 3032
application-specific content to the base NIEM model. 3033

• Exchange Schema: a NIEM-conformant schema which specifies a document in 3034
a particular exchange. 3035

• Subset Schema: a profile of a NIEM-conformant schema, derived from a 3036
reference schema, but which specifies instances that only require a portion of the 3037
reference schema. 3038

http://www.whitehouse.gov/omb/egov/documents/CRM.PDF�

NIEM NDR Draft Version 1.2 Page 80 of 126
August 7, 2007

• Constraint Schema: a schema which adds additional constraints to NIEM-3039
conformant instances, but which is assumed to validate in concert with existing 3040
NIEM-conformant or subset schemas. A constraint schema need not validate 3041
constraints that are applied by other schemas. 3042

The only mandatory schemas for validation are the NIEM reference schemas or correct 3043
subsets. The NIEM schemas may import additional schemas, such as code table 3044
schemas, as needed. The optional exchange schema imports, re-uses, and organizes 3045
the components from the NIEM for the particular exchange. An optional extension 3046
schema may be used to add extended types and properties for components not 3047
contained in the NIEM, but which are needed for the exchange. 3048

Note that while only the reference schemas, or subsets thereof, are required for 3049
validation of a NIEM-conformant instance. The IEPD specification requires that an IEPD 3050
include an exchange schema along with the reference schemas (or subsets) to be 3051
considered a complete IEPD. 3052

The exchange and extension schemas can be combined into a single schema and 3053
namespace, or can be broken out into separate schemas and corresponding 3054
namespaces. The user may decide the best way to organize components. If the 3055
extension components will be reused elsewhere, it may be more efficient to maintain 3056
them in a separate namespace, rather than including them in a document namespace. 3057

The NIEM reference schemas are over-inclusive and under-constrained. The reason for 3058
this approach is that pre-determining all user needs and constraints is rarely possible. 3059
The only way to reach consensus on components is to include all obvious requirements 3060
and maintain relatively relaxed constraints. 3061

To ensure interoperability, specific component requirements and constraints are 3062
determined on a per-exchange basis (in IEPDs). By creating a subset of NIEM Core, 3063
reference and code table schemas, the user can limit the components to only those he or 3064
she needs. In the future, a business component layer between IEPDs and NIEM will 3065
allow domains to apply consistent requirements and constraints for their exchanges. 3066

The basic principle for a subset is that an instance that validates against a correct subset 3067
schema will always validate against the full reference NIEM schema set. The user may 3068
also adjust cardinality constraints, as desired, within the subset schemas. 3069

Additional constraints may be handled in a constraint schema. A constraint schema is 3070
derived from a subset schema. However, it may contain other constraints (for example, 3071
additional types for specific constraints). The constraint schema provides an alternative 3072
constraint validation path that allows the user to reduce the possible set of allowable XML 3073
instances, independent of the NIEM schema or subset conformance validation path. This 3074
is done through multi-pass validation. A correctly constructed XML instance will validate 3075
through both the conformance and the constraint path. 3076

NIEM NDR Draft Version 1.2 Page 81 of 126
August 7, 2007

Appendix B. NIEM Design Principles 3077

This appendix summarizes all the underlying NIEM design principles discussed in 3078
Section 3, Guiding Principles. 3079

[Principle 1] 3080

This specification should specify what is necessary for interoperability, and no more. 3081

[Principle 2] 3082

This specification should focus on providing rules for specifying schemas. 3083

[Principle 3] 3084

This specification should feature rules which are as specific, precise, and concise as 3085
possible. 3086

[Principle 4] 3087

The content of a NIEM-conformant data instance should not be modified by processing 3088
against XML schemas. 3089

[Principle 5] 3090

NIEM should depend on XML Schema validating parsers for validation of XML content. 3091

[Principle 6] 3092

The primary purpose of XML Schema validation is to restrict processed data to that data 3093
that conforms to agreed-upon rules. This restriction is achieved by marking as invalid 3094
that data that does not conform to the rules defined by the schema. 3095

[Principle 7] 3096

Constraints on XML instances MAY be validated by multiple schema validation passes, 3097
using multiple schemas for a single namespace. 3098

[Principle 8] 3099

Each NIEM-conformant namespace will be defined by exactly one reference schema. 3100

[Principle 9] 3101

NIEM-conformant schemas do not specify data that uses mixed content. 3102

[Principle 10] 3103

Using named global components in schemas maximizes the capacity for reuse. 3104

[Principle 11] 3105

Wildcards in standard schemas should be avoided. 3106

[Principle 12] 3107

Schema locations specified within NIEM-conformant reference schemas are hints and 3108
provide default values to processing applications. 3109

[Principle 13] 3110

NIEM-conformant instances and schemas should reuse components from NIEM 3111
distribution schemas when possible. 3112

[Principle 14] 3113

A namespace is a required part of the name of a component. A component's local name 3114
is considered independent of, and unassociated with, names from other namespaces. 3115

NIEM NDR Draft Version 1.2 Page 82 of 126
August 7, 2007

[Principle 15] 3116

NIEM is intended for extension and augmentation by users and developers outside the 3117
standardization process. 3118

[Principle 16] 3119

XML data is primarily intended for automatic processing, not for literal presentation to 3120
people. 3121

[Principle 17] 3122

NIEM should not depend on specific software packages, frameworks, or systems for 3123
interpretation of XML instances. 3124

[Principle 18] 3125

NIEM should be implemented with a variety of commercial off-the-shelf and free software 3126
products. 3127

[Principle 19] 3128

A data component definition should be drafted before the associated data element name 3129
is composed. 3130

[Principle 20] 3131

Components in NIEM should be given names which are consistent with names of other 3132
NIEM components. Such names should be based on simple rules. 3133

 3134

NIEM NDR Draft Version 1.2 Page 83 of 126
August 7, 2007

Appendix C. NIEM Rules 3135

This listing of rules is informative only. For reference purposes, it summarizes all the 3136
rules found in this document. 3137

[Rule 4-1] 3138

 A NIEM-conformant schema MUST conform to XML as specified by [XML] 3139

[Rule 4-2] 3140

 A NIEM-conformant schema MUST conform to the specification for namespaces 3141
in XML, as defined by [XMLNamespaces] and [XMLNamespacesErrata]. 3142

[Rule 4-3] 3143

 A NIEM-conformant schema MUST conform to the W3C XML Schema 3144
Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes, 3145
as specified by [XMLSchemaStructures] and [XMLSchemaDatatypes]. 3146

[Rule 4-4] 3147

 Within a NIEM-conformant schema, the text definition provided for each 3148
documented component SHALL follow the requirements and recommendations for data 3149
definitions given by [ISO 11179 Part 4]. 3150

[Rule 4-5] 3151

 In general, a NIEM component name SHALL be formed by applying the 3152
informative guidelines and examples detailed in Annex A of [ISO 11179 Part 5], with 3153
exceptions as specified in this document, most notably those specified in Section 8, 3154
Naming Rules. 3155

[Rule 5-1] 3156

 Within a NIEM-conformant schema, an element xsd:complexType SHALL 3157
NOT own the attribute mixed with the value true. 3158

[Rule 5-2] 3159

 Within a NIEM-conformant schema, an element declaration which is of complex 3160
content SHALL NOT own the attribute mixed with the value true. 3161

[Rule 5-3] 3162

 A NIEM-conformant schema SHALL NOT contain a reference to the type 3163
definition xsd:NOTATION, or to a type derived from that type. 3164

[Rule 5-4] 3165

 A NIEM-conformant schema SHALL NOT contain the element xsd:notation. 3166

[Rule 5-5] 3167

 A NIEM-conformant schema SHALL NOT contain the element xsd:include. 3168

[Rule 5-6] 3169

 A NIEM-conformant schema SHALL NOT contain the element xsd:redefine. 3170

[Rule 5-7] 3171

 A NIEM-conformant schema SHALL NOT reference the type xsd:anyType. 3172

[Rule 5-8] 3173

 A NIEM-conformant schema SHALL NOT reference the type 3174
xsd:anySimpleType. 3175

NIEM NDR Draft Version 1.2 Page 84 of 126
August 7, 2007

[Rule 5-9] 3176

 Within a NIEM-conformant schema, an element declaration with the attribute 3177
name and without the attribute type MUST carry the attribute abstract with the value 3178
true. 3179

[Rule 5-10] 3180

 Within a NIEM-conformant schema, an attribute declaration with attribute name 3181
MUST carry the attribute type. 3182

[Rule 5-11] 3183

 A NIEM-conformant schema SHALL NOT contain the element xsd:any. 3184

[Rule 5-12] 3185

 A NIEM-conformant schema SHALL NOT contain the element 3186
xsd:anyAttribute. 3187

[Rule 5-13] 3188

 Within a NIEM-conformant schema, any type definition MUST appear as an 3189
immediate child of the document element xsd:schema. 3190

[Rule 5-14] 3191

 Within a NIEM-conformant schema, any element declaration carrying the 3192
attribute name MUST appear as an immediate child of the document element 3193
xsd:schema. 3194

[Rule 5-15] 3195

 Within a NIEM-conformant schema, any attribute declaration owning the attribute 3196
name MUST appear as an immediate child of the document element xsd:schema. 3197

[Rule 5-16] 3198

 A NIEM-conformant schema SHALL NOT contain any of the elements 3199
xsd:unique, xsd:key, xsd:keyref, xsd:selector, or xsd:field. 3200

[Rule 5-17] 3201

 A NIEM-conformant schema SHALL NOT contain the element xsd:all or the 3202
element xsd:choice. 3203

[Rule 5-18] 3204

 Within a NIEM-conformant schema, any immediate child of a model group 3205
xsd:sequence element MUST be one of xsd:annotation, or xsd:element. 3206

[Rule 5-19] 3207

 A NIEM-conformant schema SHALL NOT contain the element xsd:group. 3208

[Rule 5-20] 3209

 Within a NIEM-conformant schema, if the element xsd:sequence carries the 3210
attribute minOccurs, it MUST set the value for the attribute to 1. 3211

[Rule 5-21] 3212

 Within a NIEM-conformant schema, if the element xsd:sequence carries the 3213
attribute maxOccurs, it MUST set the value of the attribute to 1. 3214

NIEM NDR Draft Version 1.2 Page 85 of 126
August 7, 2007

[Rule 5-22] 3215

 Within a NIEM-conformant schema, if an element declaration carries the attribute 3216
block, it MUST set the value for the attribute to the empty string. 3217

[Rule 5-23] 3218

 Within a NIEM-conformant schema, if a complex type definition carries the 3219
attribute block, it MUST set the value for the attribute to the empty string. 3220

[Rule 5-24] 3221

 Within a NIEM-conformant schema, if the document element xsd:schema 3222
carries the attribute blockDefault, it MUST set the value for the attribute to the empty 3223
string. 3224

[Rule 5-25] 3225

 Within a NIEM-conformant schema, if a simple type definition carries the attribute 3226
final, it MUST set the value for the attribute to the empty string. 3227

[Rule 5-26] 3228

 Within a NIEM-conformant schema, if a complex type definition carries the 3229
attribute final, it MUST set the value for the attribute to the empty string. 3230

[Rule 5-27] 3231

 Within a NIEM-conformant schema, if an element declaration carries the attribute 3232
final, it MUST set the value for the attribute to the empty string. 3233

[Rule 5-28] 3234

 Within a NIEM-conformant schema, if the document element xsd:schema 3235
carries the attribute finalDefault, it MUST set the value for that attribute to the empty 3236
string. 3237

[Rule 5-29] 3238

 Within a NIEM-conformant schema, any element xsd:element SHALL NOT 3239
carry the attribute default. 3240

[Rule 5-30] 3241

 Within a NIEM-conformant schema, any element xsd:attribute SHALL NOT 3242
carry the attribute default. 3243

[Rule 5-31] 3244

 A NIEM-conformant schema SHALL NOT contain the element xsd:list. 3245

[Rule 5-32] 3246

 A NIEM-conformant schema SHALL NOT contain the element xsd:union. 3247

[Rule 5-33] 3248

 Within a NIEM-conformant schema, the document element xsd:schema MUST 3249
carry the attribute targetNamespace. 3250

[Rule 5-34] 3251

 The value of the required attribute targetNamespace on the document element 3252
xsd:schema MUST match the production <absolute-URI> as defined by [RFC3986]. 3253

NIEM NDR Draft Version 1.2 Page 86 of 126
August 7, 2007

[Rule 5-35] 3254

 Within a NIEM-conformant schema, the document element xsd:schema MUST 3255
carry the attribute version. 3256

[Rule 5-36] 3257

 The value of the required attribute version on the document element 3258
xsd:schema MUST NOT be an empty string. 3259

[Rule 5-37] 3260

 Within a NIEM-conformant schema, the element xsd:import MUST carry the 3261
attribute namespace. 3262

[Rule 5-38] 3263

 The value of the required attribute namespace carried by the element 3264
xsd:import MUST match the production <absolute-URI> as defined by [RFC3986]. 3265

[Rule 5-39] 3266

 Within a NIEM-conformant schema, the element xsd:import MUST carry the 3267
attribute schemaLocation. 3268

[Rule 5-41] 3269

 Within a NIEM-conformant schema, the value of the required attribute 3270
schemaLocation carried by the element xsd:import MUST match either the 3271
production <absolute-URI>, or the definition of "relative-path reference", as defined 3272
by [RFC3986]. 3273

[Rule 5-42] 3274

 Within a NIEM-conformant schema, the value of the required attribute 3275
schemaLocation carried by the element xsd:import MUST be resolvable to a XML 3276
schema document file that is valid according to [XMLSchemaStructures] and 3277
[XMLSchemaDatatypes]. 3278

[Rule 5-43] 3279

 Within a NIEM-conformant schema, when a namespace other than the XML 3280
namespace or the XML Schema namespace is used, it MUST be imported into the 3281
schema using the xsd:import element. 3282

[Rule 5-44] 3283

 Within a NIEM-conformant schema, when a namespace other than the XML 3284
namespace or the XML Schema namespace is used, its content MUST be valid with 3285
respect to the schema imported for that namespace. 3286

[Rule 5-45] 3287

 Within a NIEM-conformant schema, an element SHALL have at most one 3288
instance of an element xsd:annotation as an immediate child. 3289

[Rule 5-46] 3290

 Within a NIEM-conformant schema, the content of an xsd:documentation 3291
element MUST be character information items as specified by [XMLInfoSet]. 3292

[Rule 5-47] 3293

 Within a NIEM-conformant schema, the element xsd:annotation MUST have 3294
at most one instance of the element xsd:documentation as an immediate child. 3295

NIEM NDR Draft Version 1.2 Page 87 of 126
August 7, 2007

[Rule 5-48] 3296

 XML comments SHALL not be used for persistent information about constructs 3297
within XML Schemas. 3298

[Rule 5-49] 3299

 Within a NIEM-conformant schema, any immediate child of an xsd:appinfo 3300
element SHALL be an element information item, or a comment information item. 3301

[Rule 5-50] 3302

 Within a NIEM-conformant schema, any element that is an immediate child of an 3303
xsd:appinfo element SHALL be in a namespace. 3304

[Rule 5-50.1] 3305

 Within a NIEM-conformant schema, an element in the XML Schema namespace 3306
MUST NOT occur as a descendant of any element xsd:appinfo. 3307

[Rule 5-51] 3308

 Within NIEM-conformant schemas, the element xsd:simpleType MUST have 3309
the element xsd:restriction as an immediate child. 3310

[Rule 5-52] 3311

 Within a NIEM-conformant schema, the element xsd:complexType MUST 3312
have as an immediate child either the element xsd:complexContent or the element 3313
xsd:simpleContent. 3314

[Rule 5-53] 3315

 Within a NIEM-conformant schema, the element xsd:simpleContent MUST 3316
have as an immediate child the element xsd:extension. 3317

[Rule 5-54] 3318

 Within a NIEM-conformant schema, given an element xsd:simpleContent 3319
with a child xsd:extension owning an attribute base, if the attribute base has a value 3320
that resolves to the name of a simple type, then the element xsd:extension MUST 3321
have an immediate child element xsd:attributeGroup. 3322

[Rule 5-55] 3323

 Within a NIEM-conformant schema, the element xsd:complexContent MUST 3324
have as an immediate child the element xsd:extension. 3325

[Rule 5-56] 3326

 Within a NIEM-conformant schema, given an element xsd:complexContent 3327
with a child xsd:extension owning an attribute base, the attribute base 3328
MUST have a value that resolves to the name of one of 3329

1. the type structures:ComplexObjectType, or 3330

2. the type structures:MetadataType, or 3331

3. the type structures:AugmentationType, or 3332

4. a NIEM-conformant complex type. 3333

[Rule 5-57] 3334

 Within a NIEM-conformant schema, any occurrence of the element 3335
xsd:attributeGroup MUST own an attribute ref. 3336

NIEM NDR Draft Version 1.2 Page 88 of 126
August 7, 2007

[Rule 5-58] 3337

 Within a NIEM-conformant schema, the attribute ref owned by any element 3338
xsd:attributeGroup MUST have a value of a qualified name (possibly using the 3339
default namespace) that SHALL resolve to the namespace for the NIEM structures 3340
namespace and the local name SimpleObjectAttributeGroup. 3341

[Rule 6-1] 3342

 Within a NIEM-conformant schema, the document element xsd:schema MUST 3343
have application information appinfo:ConformantIndicator, with text content 3344
"true". 3345

[Rule 6-2] 3346

 Two XML schemas SHALL have the same value for attribute targetNamespace 3347
carried by the element xsd:schema if and only if they represent the same set of 3348
components. 3349

[Rule 6-3] 3350

 Two XML Schemas SHALL have the same value for attribute 3351
targetNamespace carried by the element xsd:schema, and different values for 3352
attribute version carried by the element xsd:schema if and only if they are different 3353
views of the same set of components. 3354

[Rule 6-4] 3355

 Within a NIEM-conformant schema, any type definition MUST be a documented 3356
component. 3357

[Rule 6-5] 3358

 Within a NIEM-conformant schema, any element declaration MUST be a 3359
documented component. 3360

[Rule 6-6] 3361

 Within a NIEM-conformant schema, any attribute declaration MUST be a 3362
documented component. 3363

[Rule 6-7] 3364

 Within a NIEM-conformant schema, the element xsd:enumeration MUST be a 3365
documented component. 3366

[Rule 6-8] 3367

 Within a NIEM-conformant schema, the document element xsd:schema MUST 3368
be a documented component. 3369

[Rule 6-9] 3370

 Words or synonyms for the words within a data element definition MAY be reused 3371
as terms in the corresponding component name, if those words do not dilute the 3372
semantics and understanding of, or impart ambiguity to, the entity or concept that the 3373
component represents. 3374

[Rule 6-10] 3375

 An object class SHALL have one and only one associated semantic meaning (i.e. 3376
a single word sense.) as described in the definition of the component that represents that 3377
object class. 3378

NIEM NDR Draft Version 1.2 Page 89 of 126
August 7, 2007

[Rule 6-11] 3379

 An object class SHALL NOT be redefined within the definitions of the 3380
components that represent properties or subparts of that entity or class. 3381

[Rule 6-12] 3382

 A NIEM data definition SHALL NOT contain explicit representational or data 3383
typing information such as number characters, type of characters, etc., unless the very 3384
nature of the component can only be described by such information. 3385

[Rule 6-13] 3386

 A component definition SHALL begin with a standard opening phrase that 3387
depends on the class of the component per Table 1: Standard Opening Phrases: 3388

[Rule 6-14] 3389

 A NIEM-conformant schema SHALL import the appinfo namespace. 3390

[Rule 6-15] 3391

 A component which is deprecated SHALL be indicated as such by the component 3392
having application information appinfo:Deprecated, with an attribute value with a 3393
value of true. 3394

[Rule 6-16] 3395

 Within a NIEM-conformant schema, the element appinfo:Base MAY be used 3396
in one of the following ways: 3397

1. By a type definition, to indicate the base type, or structures:Object 3398
or structures:Association, or 3399

2. By an element declaration, to indicate the base element 3400

 The element appinfo:Base SHALL NOT be used for any other purpose. 3401

[Rule 6-17] 3402

 Within a NIEM-conformant schema, the element appinfo:Base SHALL 3403
indicate, by namespace and name, one of the following: 3404

1. a NIEM-conformant schema component, or 3405

2. structures:Object, or 3406

3. structures:Association. 3407

[Rule 6-18] 3408

 Within a NIEM-conformation schema, an attribute appinfo:namespace owned 3409
by an element appinfo:Base SHALL have a value of either: 3410

1. a namespace which is the target namespace of a NIEM-conformant 3411
schema, or 3412

2. the structures namespace. 3413

[Rule 6-19] 3414

 Within a NIEM-conformant schema, an element appinfo:Base which does not 3415
own an attribute appinfo:namespace SHALL refer to the target namespace of the 3416
schema in which it is used. 3417

NIEM NDR Draft Version 1.2 Page 90 of 126
August 7, 2007

[Rule 6-20] 3418

 Within a NIEM-conformant schema, an element appinfo:Base SHALL own an 3419
attribute appinfo:name. 3420

[Rule 6-21] 3421

 Within a NIEM-conformant schema, if an element appinfo:Base indicates a 3422
NIEM-conformant namespace, then the value of the attribute appinfo:name owned by 3423
the element appinfo:Base SHALL indicate a schema component in the indicated 3424
namespace. 3425

[Rule 6-22] 3426

 Within a NIEM-conformant schema, if an element appinfo:Base indicates the 3427
structures namespace, then the value of the attribute appinfo:name owned by 3428
the element appinfo:Base SHALL have a value of one of: 3429

1. structures:Object, or 3430

2. structures:Association, or 3431

3. a schema component defined by the structures schema. 3432

[Rule 6-23] 3433

 Within a NIEM-conformant schema, the element appinfo:AppliesTo MAY be 3434
used in any of the following ways: 3435

1. To indicate a base type to which an augmentation may be applied 3436

2. To indicate a base type to which a metadata type may be applied 3437

 The element appinfo:AppliesTo SHALL NOT be used for any other purpose. 3438

[Rule 6-24] 3439

 Within a NIEM-conformant schema, the element appinfo:AppliesTo SHALL 3440
indicate a schema component, by namespace and name. 3441

[Rule 6-25] 3442

 Within a NIEM-conformation schema, an attribute appinfo:namespace owned 3443
by an element appinfo:AppliesTo SHALL indicate the namespace of the type to 3444
which appinfo:AppliesTo refers. The indicated namespace SHALL be NIEM-3445
conformant. 3446

[Rule 6-26] 3447

 The type to which the attribute appinfo:appliesTo refers MUST be the 3448
indicated type or MUST be transitively derived from the indicated type. 3449

[Rule 6-27] 3450

 Within a NIEM-conformant schema, an element appinfo:AppliesTo which 3451
does not carry an attribute appinfo:namespace SHALL refer to the target namespace 3452
of the schema in which it is used. 3453

[Rule 6-28] 3454

 Within a NIEM-conformant schema, an element appinfo:AppliesTo SHALL 3455
carry an attribute appinfo:name. The value of this attribute SHALL indicate the local 3456
name of a schema component within the namespace specified by the element. 3457

NIEM NDR Draft Version 1.2 Page 91 of 126
August 7, 2007

[Rule 6-29] 3458

 Within a NIEM-conformant schema, the element appinfo:ReferenceTarget 3459
SHALL specify the type of a schema component which an instance of a reference 3460
element references. The element appinfo:ReferenceTarget SHALL NOT be used 3461
for any other purpose. 3462

[Rule 6-30] 3463

 A reference element SHALL reference an instance of the indicated type, or an 3464
instance of a type derived from that type. 3465

[Rule 6-30.1] 3466

 Within a NIEM-conformant schema, a reference element MUST have at most one 3467
instance of the element appinfo:ReferenceTarget. 3468

[Rule 6-31] 3469

 Within a NIEM-conformant schema, the element appinfo:ReferenceTarget 3470
SHALL indicate a type definition schema component, by namespace and name. 3471

[Rule 6-32] 3472

 Within a NIEM-conformation schema, an attribute appinfo:namespace carried 3473
by an element appinfo:ReferenceTarget SHALL indicate the namespace of the 3474
referenced schema component. The indicated namespace SHALL be NIEM-conformant. 3475

[Rule 6-33] 3476

 Within a NIEM-conformant schema, an element appinfo:ReferenceTarget 3477
which does not carry an attribute appinfo:namespace SHALL refer to the target 3478
namespace of the schema in which it is used. 3479

[Rule 6-34] 3480

 Within a NIEM-conformant schema, an element appinfo:ReferenceTarget 3481
SHALL carry an attribute appinfo:name. The value of this attribute SHALL indicate the 3482
local name of a type definition schema component within the namespace specified by the 3483
element. 3484

[Rule 6-35] 3485

 Within a NIEM-conformant schema, a complex type definition SHALL be one of 3486
the following classes of types: 3487

1. An object type 3488

2. A role type 3489

3. An association type 3490

4. A metadata type 3491

5. An augmentation type 3492

6. An adapter type. 3493

[Rule 6-36] 3494

 Within a NIEM-conformant schema, an element MUST NOT be introduced more 3495
than once into the direct content of a type definition. This applies to content acquired 3496
through extension of base types. This does not apply to a base element or derived 3497
element to one previously existing in the type definition. 3498

NIEM NDR Draft Version 1.2 Page 92 of 126
August 7, 2007

[Rule 6-37] 3499

Within a NIEM-conformant schema, an object type SHALL be a complex type 3500
definition that has one of the following forms: 3501

1. Has simple content, is based on a simple type, and contains the attribute 3502
group structures:SimpleObjectAttributeGroup, and has 3503
application information appinfo:Base of structures:Object, or 3504

2. Has complex content, and is based on complex type 3505
structures:ComplexObjectType, and has application information 3506
appinfo:Base of structures:Object, or 3507

3. Is a complex type that is derived from an object type, which is defined 3508
according to this rule. 3509

[Rule 6-38] 3510

 Within a NIEM-conformant schema, any element with a name beginning with the 3511
string RoleOf SHALL represent a base type, of which the containing type represents a 3512
role. 3513

[Rule 6-39] 3514

 Within a NIEM-conformant schema, an association type SHALL be a complex 3515
type definition that has one of the following forms: 3516

1. Has complex content, is based on the complex type 3517
structures:ComplexObjectType, and has application information 3518
appinfo:Base of structures:Association, or 3519

2. Is a complex type that is derived from an association type, which is 3520
defined according to this rule. 3521

[Rule 6-40] 3522

 Within a NIEM-conformant schema, in an association type, any element which 3523
represents a participant in the relationship established by the association type SHALL be 3524
a reference element. 3525

[Rule 6-41] 3526

 Within a NIEM-conformant schema, a metadata type SHALL contain elements 3527
appropriate for a specific class of data about data. 3528

[Rule 6-42] 3529

 Within a NIEM-conformant schema, a metadata type and only a metadata type 3530
SHALL be derived directly from structures:MetadataType. 3531

[Rule 6-43] 3532

 Within a NIEM-conformant schema, a metadata type MAY have application 3533
information appinfo:AppliesTo, indicating the NIEM-conformant object, association, 3534
or external adapter types to which the metadata applies. 3535

[Rule 6-44] 3536

 Within a NIEM-conformant schema, a metadata type which does not have 3537
application information appinfo:AppliesTo MAY be applied to any object type, 3538
association type, or external adapter type. 3539

[Rule 6-45] 3540

 An augmentation type: 3541

NIEM NDR Draft Version 1.2 Page 93 of 126
August 7, 2007

1. SHALL be transitively derived from structures:AugmentationType 3542
and 3543

2. SHALL contain elements which represent properties to be applied to a 3544
base type. 3545

[Rule 6-46] 3546

Within a NIEM-conformant schema, an augmentation element definition: 3547

1. SHALL have a type which is an augmentation type 3548

2. SHALL use the substitutionGroup attribute such that it is transitively 3549
substitutable for the element structures:Augmentation 3550

 An element which is not an augmentation element SHALL NOT meet either of the 3551
above criteria. 3552

[Rule 6-47] 3553

 Within a NIEM-conformant schema, an element definition for an augmentation 3554
element MAY contain one or more instances of the element structures:AppliesTo 3555
as application information, to specify types to which the augmentation element applies. 3556

[Rule 6-48] 3557

 Within a NIEM-conformant schema, an element definition for an augmentation 3558
element which does not contain any instances of the element structures:AppliesTo 3559
MAY be applied to any object or association type. 3560

[Rule 6-49] 3561

 Any type definition referenced by a component within a NIEM-conformant 3562
schema MUST be from one of the following: 3563

1. The schema being defined 3564

2. A namespace imported as NIEM-conformant 3565

3. The XML Schema namespace 3566

4. The structures namespace. 3567

[Rule 6-50] 3568

 Any element declaration referenced by a component within a NIEM-conformant 3569
schema MUST be from one of the following: 3570

1. The schema being defined 3571

2. A namespace imported as NIEM-conformant 3572

3. The structures namespace 3573

4. An external namespace, in accordance with the rules for external 3574
schemas as specified by this specification. 3575

[Rule 6-51] 3576

 Any attribute declaration referenced by a component within a NIEM-conformant 3577
schema MUST be from one of the following: 3578

1. The schema being defined 3579

2. A namespace imported as NIEM-conformant 3580

3. The structures namespace 3581

4. The XML namespace 3582

NIEM NDR Draft Version 1.2 Page 94 of 126
August 7, 2007

5. An external namespace, in accordance with the rules for external 3583
schemas as specified by this specification. 3584

[Rule 6-52] 3585

 A NIEM-conformant schema MUST import the NIEM structures namespace. 3586

[Rule 6-53] 3587

 NIEM-conformant schemas and instances MUST use content within the NIEM 3588
structures namespace as specified in this document and ONLY as specified by this 3589
document. 3590

[Rule 6-54] 3591

 Within a NIEM-conformant schema, a complex type definition SHALL include the 3592
attribute structures:sequenceID if the order of an occurrence of the type, within its 3593
parent, relative to its siblings, is meaningful and pertinent, and if the content presented by 3594
all instances defined by the schema will not otherwise occur in the desired sequential 3595
order. 3596

[Rule 6-55] 3597

 Within a NIEM-conformant schema, a reference element and only a reference 3598
element SHALL be defined to be of type structures:ReferenceType. 3599

[Rule 6-56] 3600

 Within a NIEM-conformant schema, a complex type SHALL NOT be defined such 3601
that an instance of that type owns the attribute structures:ref. 3602

[Rule 6-57] 3603

 Within a NIEM-conformant schema, any two elements of the form 3604

 NCName 3605

 and 3606

 NCNameReference 3607

 where the string value of NCName is the same in both forms, SHALL be defined 3608
to have identical semantics. The NIEM recognizes no difference in meaning between a 3609
reference element and an element that is not a reference element. 3610

[Rule 6-58] 3611

 Within a NIEM-conformant schema, if both elements NCName and 3612
NCNameReference exist, then the appinfo:ReferenceTarget of any 3613
NCNameReference element MUST be the type of the element NCName. 3614

[Rule 6-59] 3615

 Within a NIEM-conformant schema, an element xsd:import that imports a 3616
namespace defined by an external schema MUST have the application information 3617
appinfo:ConformantIndicator, with a value of false. 3618

[Rule 6-60] 3619

 Within a NIEM-conformant schema, an element xsd:import that imports a 3620
namespace defined by an external schema MUST be a documented component. 3621

[Rule 6-61] 3622

 Within a NIEM-conformant schema, an adapter type MUST have application 3623
information appinfo:ExternalAdapterTypeIndicator with a value of true. A 3624
type that is not an adapter type SHALL NOT contain that indicator. 3625

NIEM NDR Draft Version 1.2 Page 95 of 126
August 7, 2007

[Rule 6-62] 3626

 Within a NIEM-conformant schema, an adapter type MUST be a immediate 3627
extension of type structures:ComplexObjectType. 3628

[Rule 6-63] 3629

 Within a NIEM-conformant schema, an adapter type MUST be composed of only 3630
elements and attributes from an external standard. 3631

[Rule 6-64] 3632

 Within a NIEM-conformant schema, an element reference used in an adapter 3633
type definition MUST be a documented component. 3634

[Rule 6-65] 3635

 Within a NIEM-conformant schema, an attribute reference used in an adapter 3636
type definition MUST be a documented component. 3637

[Rule 6-66] 3638

 Within a NIEM-conformant schema, an adapter type MUST NOT be extended or 3639
restricted. 3640

[Rule 7-1] 3641

 A NIEM-conformant instance MUST validate to an authoritative NIEM-conformant 3642
schema set for namespaces contained in the instance, and for additional namespaces 3643
required for validation. 3644

[Rule 7-2] 3645

 Within a NIEM-conformant instance, the meaning of an element with no content 3646
is that additional properties are not asserted. There SHALL NOT be additional meaning 3647
interpreted for an element with no content. 3648

[Rule 7-3] 3649

 Within a NIEM-conformant element instance, there SHALL NOT be any 3650
difference in meaning between a property asserted via element containment and a 3651
property asserted by element reference, except as explicitly described by the semantics 3652
of the elements involved. 3653

[Rule 7-4] 3654

 Any attribute structures:ref MUST have a value which occurs as the value 3655
of an attribute structures:id within the same information set. 3656

[Rule 7-5] 3657

 Within a NIEM-conformant element instance, given that a reference element is 3658
restricted to a set S of target types Ti, S = { T1, T2, ..., Tn}, any attribute 3659
structures:ref MUST indicate the value of an attribute structures:id which is 3660
owned by an element of a type T such that T is, or is derived from, some type Ti in S. 3661

[Rule 7-6] 3662

 The order of elements that are children of a NIEM-conformant element SHALL be 3663
presented as if their sequential order is as follows: 3664

1. First, elements owning an attribute structures:sequenceID, in the 3665
order that would be yielded with their sequence IDs sorted via XSLT's 3666
sort element, with a data type of number and an order of ascending. 3667

2. Following those elements, the remaining elements, in the order in which 3668
they occur within the XML instance. 3669

NIEM NDR Draft Version 1.2 Page 96 of 126
August 7, 2007

[Rule 7-7] 3670

 Within a NIEM-conformant schema or instance, the attribute 3671
structures:sequenceID SHALL NOT be interpreted as meaningful beyond an 3672
indicator of sequential order of an object relative to its siblings. 3673

[Rule 7-8] 3674

 Within a NIEM-conformant element instance, when an object O links to a 3675
metadata object via an attribute structures:metadata, the information in the 3676
metadata object SHALL be applied to the object O. 3677

[Rule 7-9] 3678

 Within a NIEM-conformant element instance, when an object O1 contains an 3679
element E, with content object O2, and O2 links to a metadata object via an attribute 3680
structures:linkMetadata, the information in the metadata object SHALL be applied 3681
to the relationship E between O1 and O2. 3682

[Rule 7-10] 3683

 Within a NIEM-conformant element instance, each IDREF contained in the value 3684
of an attribute structures:metadata MUST refer to an attribute structures:id 3685
owned by an instance of a metadata type in the same information set. 3686

[Rule 7-11] 3687

 Within a NIEM-conformant element instance, each IDREF contained in the value 3688
of an attribute structures:linkMetadata MUST refer to an attribute 3689
structures:id owned by an instance of a metadata type in the same information set. 3690

[Rule 7-12] 3691

 Within a set of NIEM-conformant element instances within an information set, 3692
any metadata element instance referred to from an element instance of some type T 3693
MUST be applicable to an object type T. 3694

[Rule 8-0.9] 3695

 Within a NIEM-conformant schema, a complex type that is a direct extension of 3696
an XML Schema namespace simple type MAY use the same local name as the simple 3697
type, if and only if the extension adds no content other than the attribute group 3698
structures:SimpleObjectAttributeGroup. 3699

[Rule 8-1] 3700

 The name of any XML Schema component defined by NIEM-conformant 3701
schemas SHALL be composed of words from the English language, using the prevalent 3702
U.S. spelling, as provided by [OED]. 3703

[Rule 8-2] 3704

 The name of any XML Schema component defined by a NIEM-conformant 3705
schema SHALL contain only the following characters: 3706

• upper-case letters ('A'-'Z'), 3707

• lower-case letters ('a'-'z'), 3708

• digits ('0'-'9'), and 3709

• hyphen ('-'). 3710

 Other characters, such as the underscore ('_') character and the period ('.') 3711
character SHALL NOT appear in component names in NIEM-conformant schemas. 3712

NIEM NDR Draft Version 1.2 Page 97 of 126
August 7, 2007

[Rule 8-3] 3713

 The hyphen character ('-') MAY appear in component names only when used as 3714
a separator between parts of a single word, phrase, or value, that would otherwise be 3715
incomprehensible without the use of a separator. 3716

[Rule 8-4] 3717

 Within a NIEM-conformant schema, any attribute declaration SHALL have a 3718
name that begins with a lower-case letter ('a'-'z'). 3719

[Rule 8-5] 3720

 Within a NIEM-conformant schema, any XML Schema component other than an 3721
attribute declaration SHALL have a name that begins with an upper-case letter ('A'-'Z'). 3722

[Rule 8-6] 3723

 The name of any XML Schema component defined by a NIEM-conformant 3724
schema SHALL use the camel case formatting convention. 3725

[Rule 8-7] 3726

 A NIEM-conformant schema MUST consistently use approved acronyms, 3727
abbreviations, and word truncations within defined names. The approved shortened 3728
forms are defined in Table 2: Abbreviations used in NIEM Core Names . 3729

[Rule 8-8] 3730

 A noun used as a term in a NIEM component MUST be used in singular form, 3731
unless the concept itself is plural. 3732

[Rule 8-9] 3733

 A verb used as a term in a NIEM component MUST be used in the present tense, 3734
unless the concept itself is past tense. 3735

[Rule 8-10] 3736

 Articles, conjunctions and prepositions SHALL NOT be used in NIEM component 3737
names, except where they are required for clarity or by standard convention (e.g.; 3738
PowerOfAttorneyCode). 3739

[Rule 8-11] 3740

 Except as specified elsewhere in this document, any element or attribute defined 3741
within a NIEM-conformant schema SHALL have a name which takes the form: 3742

• object class qualifier terms (0 or more) 3743

• an object class term (1) 3744

• property qualifier terms (0 or more) 3745

• a property term (1) 3746

• representation qualifier terms (0 or more) 3747

• a representation term (1). 3748

[Rule 8-12] 3749

 The object class term of a NIEM component SHALL consist of a term identifying 3750
a category of concrete concepts or entities. 3751

[Rule 8-13] 3752

 A property term SHALL describe or represent a characteristic or subpart of an 3753
entity or concept. 3754

NIEM NDR Draft Version 1.2 Page 98 of 126
August 7, 2007

[Rule 8-14] 3755

 Multiple qualifier terms MAY be used within a component name as necessary to 3756
ensure clarity and uniqueness within its namespace and usage context. 3757

[Rule 8-15] 3758

 The number of qualifier terms SHOULD be limited to the absolute minimum 3759
required to make the component name unique and understandable. 3760

[Rule 8-16] 3761

 The order of qualifiers SHALL NOT be used to differentiate names. 3762

[Rule 8-17] 3763

 If any word in the representation term is redundant with any word in the property 3764
term, one occurrence SHOULD be deleted. 3765

[Rule 8-18] 3766

 Within a NIEM-conformant schema, the name of an element declaration that is of 3767
simple content MUST use a representation term found in Table 3: Representation Terms. 3768

[Rule 8-19] 3769

 Within a NIEM-conformant schema, the name of an element declaration that is of 3770
complex content, and which corresponds to a concept listed in Table 3: Representation 3771
Terms, MUST use a representation term from that table. 3772

[Rule 8-20] 3773

 Within a NIEM-conformant schema, the name of an element declaration which is 3774
of complex content and which does not correspond to a concept listed in Table 3: 3775
Representation Terms, MUST NOT use a representation term from that table. 3776

[Rule 8-21] 3777

 Within a NIEM-conformant schema, the name of an attribute declaration MUST 3778
use a representation term from Table 3: Representation Terms. 3779

[Rule 8-22] 3780

 Within a NIEM-conformant schema, the name of any type definition MUST use 3781
the representation term Type. 3782

[Rule 8-23] 3783

 Within a NIEM-conformant schema, the name of any simple type definition 3784
SHALL use the representation term qualifier Simple. This qualifier SHALL appear after 3785
any other representation term qualifiers. 3786

[Rule 8-24] 3787

 Within a NIEM-conformant schema, the name of any code type SHALL use the 3788
representation term qualifier Code. 3789

[Rule 8-25] 3790

 Within a NIEM-conformant schema, any type definition which has a base type 3791
definition of a code type or which is transitively based on a code type SHALL have a 3792
name which uses the representation term qualifier Code. 3793

[Rule 8-26] 3794

 Within a NIEM-conformant schema, any association type SHALL have a name 3795
that uses the representation term qualifier Association. Types other than association 3796
types SHALL NOT use the representation term qualifier Association. 3797

NIEM NDR Draft Version 1.2 Page 99 of 126
August 7, 2007

[Rule 8-27] 3798

 Within a NIEM-conformant schema, any augmentation type SHALL have a name 3799
that uses the representation term qualifier Augmentation. Types other than 3800
augmentation types SHALL NOT use the representation term qualifier Augmentation. 3801

[Rule 8-28] 3802

 Within a NIEM-conformant schema, any metadata type SHALL have a name that 3803
uses the representation term qualifier Metadata. Types other than metadata types 3804
SHALL NOT use the representation term qualifier Metadata. 3805

[Rule 8-29] 3806

 Within a NIEM-conformant schema, the name of any attribute group definition 3807
schema component SHALL use the representation term AttributeGroup. 3808

[Rule 8-30] 3809

 Within a NIEM-conformant schema, the name of any reference element SHALL 3810
use the representation term suffix Reference. 3811

[Rule 8-31] 3812

 Within a NIEM-conformant schema, the name of an association element SHALL 3813
use the representation term qualifier Association. 3814

[Rule 8-32] 3815

 Within a NIEM-conformant schema, the name of an augmentation element 3816
SHALL use the representation term Augmentation. 3817

[Rule 8-33] 3818

 Within a NIEM-conformant schema, the name of a metadata element SHALL use 3819
the representation term Metadata. 3820

[Rule 8-34] 3821

 Within a NIEM-conformant schema, the name of a role SHALL use the property 3822
term RoleOf. 3823

 3824

NIEM NDR Draft Version 1.2 Page 100 of 126
August 7, 2007

Appendix D. Name Syntax for Special 3825

Components 3826

The following table summarizes NIEM general naming syntax for special components and 3827
their associated types. Refer to Sections 8.12 and 8.13 for the specific rules associated 3828
with this table. 3829

Note this table does not mention the general syntax for standard types and properties 3830
introduced in Sections 8.12 and 8.13. 3831

Table 4: Name Syntax for Special Components 3832
Name Syntax * Notes
Association
[Property]Association Preferred: [Property] describes relationship
[Object1][Object2]Association Alternate 1: related objects
[Object]Association Alternate 2: related objects are same class
Role Reference
RoleOf[Object]Reference Element in the role that references base type
Type Augmentation
[Object][Property]Augmentation [Object][Property] is from type augmented
Metadata
[Property]Metadata
Adapter
[Object][Property]Adapter
Abstract
[Object][Property] Preferred
[Object][Property]Abstract Alternate: when required to prevent name clash

* Object and Property refer to [ISO 11179 Part 5]terms in a component name. 3833

NIEM NDR Draft Version 1.2 Page 101 of 126
August 7, 2007

Appendix E. Representation Terms 3834

The following table lists the standard set of representation terms for use in the 3835
representation portion of NIEM-conformant component name. Refer to Section 8.11, 3836
Representation Term, for the specific rules associated with this table. 3837

 3838

Primary Representation
Term

Secondary
Representation Term

Definition

Amount - A number of monetary units
specified in a currency where the
unit of currency is explicit or
implied.

BinaryObject - A set of finite-length sequences
of binary octets.

 Graphic A diagram, graph, mathematical
curves, or similar representation

 Picture A visual representation of a
person, object, or scene

 Sound A representation for audio

 Video A motion picture representation;
may include audio encoded
within

Code A character string (letters,
figures or symbols) that for
brevity, language independence,
or precision, represents a
definitive value of an attribute.

DateTime A particular point in the
progression of time together with
relevant supplementary
information.

 Date A particular day, month, and year
in the Gregorian calendar.

Time A particular point in the
progression of time within an
unspecified 24 hour day.

ID

 A character string to identify and
distinguish uniquely, one
instance of an object in an
identification scheme from all
other objects in the same
scheme together with relevant
supplementary information.

NIEM NDR Draft Version 1.2 Page 102 of 126
August 7, 2007

 URI A string of characters used to
identify (or name) a resource.
The main purpose of this
identifier is to enable interaction
with representations of the
resource over a network,
typically the World Wide Web,
using specific protocols. A URI
is either a Uniform Resource
Locator (URL) or a Uniform
Resource Name (URN). The
specific syntax for each is
defined by [RFC3986].

Indicator A list of two mutually exclusive
Boolean values that express the
only possible states of a
property.

Measure A numeric value determined by
measuring an object along with
the specified unit of measure.

Numeric Numeric information that is
assigned or is determined by
calculation, counting, or
sequencing. It does not require a
unit of quantity or unit of
measure.

 Value A result of a calculation

 Rate A representation of a ratio where
the two units are not included.

 Percent A representation of a ratio in
which the two units are the
same.

Quantity A counted number of non-
monetary units possibly including
fractions.

Text - A character string (i.e. a finite
sequence of characters)
generally in the form of words of
a language.

 Name A word or phrase that constitutes
the distinctive designation of a
person, place, thing or concept.

 3839

NIEM NDR Draft Version 1.2 Page 103 of 126
August 7, 2007

Appendix F. Documentation Standard 3840

Opening Phrases 3841

This listing of standard opening phrases is informative only. For reference purposes, it 3842
repeats a table that appears in Section 6.2.1, Human-Readable Documentation. 3843

 3844

ThisComponent Class Definition opening phrase
Abstract "A data concept for a …"
Association "A relationship …"
Augmentation "Supplements …"
Entities and properties of such "A (An) …"
Indicator "True if …; false otherwise/if…"
Role "Acts as …"
Type "A data type for …"
Role "Acts as …"

 3845

NIEM NDR Draft Version 1.2 Page 104 of 126
August 7, 2007

Appendix G. NIEM Core Abbreviations 3846

This listing of abbreviations used in NIEM Core is informative only. For reference 3847
purposes, it repeats a table that appears in Section 8.5, Use of Acronyms and 3848
Abbreviations. 3849

 3850

Abbreviation Full Meaning
ANSI American National Standards Institute
CMV Commercial Motor Vehicle
DEA Drug Enforcement Agency
DNA Deoxyribonucleic Acid
FGI Foreign Government Information
FIPS Federal Information Processing Standard
IC Intelligence Community
ID Identifier
IP Internet Protocol
ISO International Standards Organization
LIS NCIC code list for license state
LSTA NCIC code list for state/country index
MCO Manufacturer's Certificate of Origin
MGRS Military Grid Reference System
MSRP Manufacturer's Suggested Retail Price
NANP North American Numbering Plan
NCIC National Crime Information Center
NCTC National Counter Terrorist Center
NIBRS National Incident Based Reporting System
NLETS The International Justice & Public Safety

Information Sharing Network (formerly known as
the National Law Enforcement Teletype System)

ORI Organization Identifier (Orion)
RES NCIC code list for registration state for boat

registrations
RF Radio Frequency
SIM Subscriber Identity Module
SSN Social Security Number
TYP NCIC code list for gun type
TYPO NCIC code list for ORI type
URI Uniform Resource Identifier
US United States
UTM Universal Transverse Mercator
VIN Vehicle Identification Number
VINA Vehicle Identification Number Analysis

 3851

NIEM NDR Draft Version 1.2 Page 105 of 126
August 7, 2007

Appendix H. Supporting Schemas 3852

NIEM provides a set of schemas which underlie the data model schemas. These 3853
schemas do not define data model content; they don't define people, or vehicles, or 3854
relationships between them. Instead, these schemas define the fundamental framework 3855
on which the data model is built. 3856

There are two supporting schemas. The first is called appinfo, and is the namespace 3857
for application information that supports data model definitions. The second is called 3858
structures, and is the namespace for basic types that augment the mechanisms of 3859
XML Schema for more sophisticated data modeling and information exchanges. 3860

This appendix defines and discusses each of the framework components in the two 3861
supporting schemas. At the conclusion of the discussion of each schema, the full 3862
schema is provided as a reference. 3863

This appendix also includes a directory listing of all the reference schemas that are part 3864
of NIEM 2.0. 3865

The appinfo namespace 3866

The appinfo schema provides support for high level data model concepts and additional 3867
syntax to support the NIEM conceptual model and validation of NIEM-conformant 3868
instances. 3869

Schema document element 3870

<xsd:schema 3871
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema” 3872
 xmlns:i=”http://niem.gov/niem/appinfo/2.0” 3873
 xmlns:s=”http://niem.gov/niem/structures/2.0” 3874
 targetNamespace=”http://niem.gov/niem/appinfo/2.0” 3875
 attributeFormDefault="qualified" version="1"> 3876

Discussion 3877

 The namespace for the appinfo namespace is 3878
http://niem.gov/niem/appinfo/2.0. 3879

Element appinfo:Resource 3880

 <xsd:element name="Resource"> 3881
 <xsd:complexType> 3882
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3883
 </xsd:complexType> 3884
 </xsd:element> 3885

Discussion 3886

 The Resource element provides a method for application information to define a 3887
name within a schema, without the name being bound to a schema component. 3888
This is used by the structures schema to define names for 3889
structures:Object and structures:Association. 3890

http://www.w3.org/2001/XMLSchema�
http://niem.gov/niem/appinfo/2.0�
http://niem.gov/niem/structures/2.0�
http://niem.gov/niem/appinfo/2.0�

NIEM NDR Draft Version 1.2 Page 106 of 126
August 7, 2007

Element appinfo:Deprecated 3891

 <xsd:element name="Deprecated"> 3892
 <xsd:complexType> 3893
 <xsd:attribute name="value" use="required"> 3894
 <xsd:simpleType> 3895
 <xsd:restriction base="xsd:boolean"> 3896
 <xsd:pattern value="true"/> 3897
 </xsd:restriction> 3898
 </xsd:simpleType> 3899
 </xsd:attribute> 3900
 </xsd:complexType> 3901
 </xsd:element> 3902

Discussion 3903

 The Deprecated element provides a method for identifying components as 3904
being deprecated. A deprecated component is one which is provided, but whose 3905
use is not recommended. 3906

Element appinfo:Base 3907

 <xsd:element name="Base"> 3908
 <xsd:complexType> 3909
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3910
 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 3911
 </xsd:complexType> 3912
 </xsd:element> 3913

Discussion 3914

 The Base element provides a mechanism for indicating base types and base 3915
elements in schema, for the cases in which XML Schema mechanisms are 3916
insufficient. For example, it is used to indicate Object or Association bases. 3917

Element appinfo:ReferenceTarget 3918

 <xsd:element name="ReferenceTarget"> 3919
 <xsd:complexType> 3920
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3921
 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 3922
 </xsd:complexType> 3923
 </xsd:element> 3924

Discussion 3925

 The ReferenceTarget element indicates a NIEM type which may be a target 3926
(that is, a destination) of a NIEM reference element. It may be used in 3927
combinations to indicate a set of valid types. 3928

Element appinfo:AppliesTo 3929

 <xsd:element name="AppliesTo"> 3930
 <xsd:complexType> 3931
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3932
 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 3933
 </xsd:complexType> 3934
 </xsd:element> 3935

NIEM NDR Draft Version 1.2 Page 107 of 126
August 7, 2007

Discussion 3936

 The AppliesTo element is used in two ways. First, it indicates the set of types 3937
to which a metadata type may be applied. Second, it indicates the set of types to 3938
which an augmentation element may be applied. 3939

Element appinfo:ConformantIndicator 3940

 <xsd:element name="ConformantIndicator" type="boolean"/> 3941

Discussion 3942

 The ConformantIndicator element may be used in two ways. First, it is 3943
included as application information for a schema document element to indicate 3944
that the schema is NIEM-conformant. Second, it is used as application 3945
information of a namespace import to indicate that the schema is not NIEM-3946
conformant. 3947

Element appinfo:ExternalAdapterTypeIndicator 3948

 <xsd:element name="ExternalAdapterTypeIndicator" type="boolean"/> 3949

Discussion 3950

 The ExternalAdapterTypeIndicator element indicates that a complex type 3951
is an external adapter type. Such a type is one that is composed of elements 3952
and attributes from non-NIEM-conformant schemas. The indicator allows 3953
schema processors to switch to alternative processing modes when processing 3954
NIEM-conformant versus non-NIEM-conformant content. 3955

NIEM NDR Draft Version 1.2 Page 108 of 126
August 7, 2007

 3956

Full XML Schema for Appinfo Namespace 3957

<?xml version="1.0" encoding="UTF-8"?> 3958
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 3959
xmlns:i="http://niem.gov/niem/appinfo/2.0" 3960
xmlns:s="http://niem.gov/niem/structures/2.0" 3961
targetNamespace="http://niem.gov/niem/appinfo/2.0" 3962
attributeFormDefault="qualified" version="1"> 3963

 <xsd:element name="Resource"> 3964
 <xsd:complexType> 3965
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3966
 </xsd:complexType> 3967
 </xsd:element> 3968

 <xsd:element name="Deprecated"> 3969
 <xsd:complexType> 3970
 <xsd:attribute name="value" use="required"> 3971
 <xsd:simpleType> 3972
 <xsd:restriction base="xsd:boolean"> 3973
 <xsd:pattern value="true"/> 3974
 </xsd:restriction> 3975
 </xsd:simpleType> 3976
 </xsd:attribute> 3977
 </xsd:complexType> 3978
 </xsd:element> 3979

 <xsd:element name="Base"> 3980
 <xsd:complexType> 3981
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3982
 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 3983
 </xsd:complexType> 3984
 </xsd:element> 3985

 <xsd:element name="ReferenceTarget"> 3986
 <xsd:complexType> 3987
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3988
 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 3989
 </xsd:complexType> 3990
 </xsd:element> 3991

 <xsd:element name="AppliesTo"> 3992
 <xsd:complexType> 3993
 <xsd:attribute name="name" type="xsd:NCName" use="required"/> 3994
 <xsd:attribute name="namespace" type="xsd:anyURI" use="optional"/> 3995
 </xsd:complexType> 3996
 </xsd:element> 3997

 <xsd:element name="ConformantIndicator" type="xsd:boolean"/> 3998
 <xsd:element name="ExternalAdapterTypeIndicator" type="xsd:boolean"/> 3999
 4000
</xsd:schema> 4001

NIEM NDR Draft Version 1.2 Page 109 of 126
August 7, 2007

The structures schema 4002

The structures schema provides support for fundamental NIEM linking mechanisms, 4003
as well as providing base types for definition of NIEM-conformant types. 4004

Schema document element 4005

<?xml version="1.0" encoding="UTF-8"?> 4006
<xsd:schema 4007
 targetNamespace="http://niem.gov/niem/structures/2.0" 4008
 version="1" 4009
 xmlns:appinfo="http://niem.gov/niem/appinfo/2.0" 4010
 xmlns:s="http://niem.gov/niem/structures/2.0" 4011
 xmlns="http://www.w3.org/2001/XMLSchema"> 4012

Discussion 4013

 The target namespace for the structures schema is 4014
http://niem.gov/niem/structures/2.0. 4015

Import of appinfo 4016

 <xsd:import 4017
 schemaLocation="../../appinfo/2.0/appinfo.xsd" 4018
 namespace="http://niem.gov/niem/appinfo/2.0"/> 4019

Discussion 4020

 The structures schema uses components from the appinfo namespace. 4021

Resource structures:Object 4022

 <xsd:annotation> 4023
 <xsd:appinfo> 4024
 <i:Resource i:name="Object"/> 4025
 </xsd:appinfo> 4026
 </xsd:annotation> 4027

Discussion 4028

 The Object resource defines an identifier which acts as a conceptual base for 4029
objects in NIEM-conformant schemas. 4030

Resource structures:Association 4031

 <xsd:annotation> 4032
 <xsd:appinfo> 4033
 <i:Resource i:name="Association"/> 4034
 </xsd:appinfo> 4035
 </xsd:annotation> 4036

Discussion 4037

 The Association resource defines an identifier which acts as a conceptual 4038
base for association in NIEM-conformant schemas. 4039

NIEM NDR Draft Version 1.2 Page 110 of 126
August 7, 2007

Attribute structures:id 4040

 <xsd:attribute name="id" type="ID"/> 4041

Discussion 4042

 The id attribute is used to define XML IDs for NIEM objects. These IDs may be 4043
targets of reference elements, metadata attributes, and link metadata attributes. 4044

Attribute structures:linkMetadata 4045

 <xsd:attribute name="linkMetadata" type="IDREFS"/> 4046

Discussion 4047

 The linkMetadata attribute allows an element to point to metadata that affects 4048
the relationship between the context and the value of the object. 4049

Attribute structures:metadata 4050

 <xsd:attribute name="metadata" type="IDREFS"/> 4051

Discussion 4052

 The attribute metadata allows an object to point to metadata that affects itself. 4053

Attribute structures:ref 4054

 <xsd:attribute name="ref" type="IDREF"/> 4055

Discussion 4056

 The ref attribute is used by reference elements in NIEM to refer to an object via 4057
an ID reference, rather than including the object itself as element content. 4058

Attribute structures:sequenceID 4059

 <xsd:attribute name="sequenceID" type="integer"/> 4060

Discussion 4061

 The sequenceID attribute allows a series of elements to define a sequence for 4062
content that does not correspond to the order of element declarations within a 4063
type. This attribute may override the sequence of elements appearing within an 4064
instance. 4065

Attribute group structures:SimpleObjectAttributeGroup 4066

 <xsd:attributeGroup name="SimpleObjectAttributeGroup"> 4067
 <xsd:attribute ref="s:id"/> 4068
 <xsd:attribute ref="s:metadata"/> 4069
 <xsd:attribute ref="s:linkMetadata"/> 4070
 </xsd:attributeGroup> 4071

NIEM NDR Draft Version 1.2 Page 111 of 126
August 7, 2007

Discussion 4072

 The SimpleObjectAttributeGroup attribute group provides a collection of 4073
attributes which are appropriate for definition of object types. 4074

Element structures:Augmentation 4075

 <xsd:element name="Augmentation" type="s:AugmentationType” 4076
 abstract="true"/> 4077

Discussion 4078

 The Augmentation element provides a substitution group head for 4079
augmentations. The designer of a message or object may use this element 4080
within an object definition. This will allow the selection of augmentations 4081
dynamically, at run time (or at least schema selection time) rather than at schema 4082
authoring time. 4083

Element structures:Metadata 4084

 <xsd:element name="Metadata" type="s:MetadataType" abstract="true"/> 4085

Discussion 4086

 The Metadata element provides a substitution group head for metadata. Like 4087
the substitution group head for augmentations, this allows selection of metadata 4088
to be decided late in message creation, rather than at schema authoring time. 4089
This element may also be used to provide a single point in a container where all 4090
metadata for a message may be deposited. 4091

Complex type structures:AugmentationType 4092

 <xsd:complexType name="AugmentationType" abstract="true"> 4093
 <xsd:attribute ref="s:id"/> 4094
 <xsd:attribute ref="s:metadata"/> 4095
 </xsd:complexType> 4096

Discussion 4097

 The AugmentationType type is a base type for all augmentations. An 4098
augmentation may have metadata and an ID, but may not have link metadata, as 4099
it does not establish a relationship between its value and its context. The 4100
individual element contents of an augmentation, however, do establish a 4101
relationship between the context of the augmentation and the values of the 4102
individual elements. 4103

Type structures:ComplexObjectType 4104

 <xsd:complexType name="ComplexObjectType" abstract="true"> 4105
 <xsd:attribute ref="s:id"/> 4106
 <xsd:attribute ref="s:metadata"/> 4107
 <xsd:attribute ref="s:linkMetadata"/> 4108
 </xsd:complexType> 4109

NIEM NDR Draft Version 1.2 Page 112 of 126
August 7, 2007

Discussion 4110

 The ComplexObjectType type provides a base class for object definition, 4111
association definitions, and external adapter type definitions. An instance of one 4112
of these types may have an ID. It may have metadata as it establishes the 4113
existence of an object (maybe a conceptual object). It may also have link 4114
metadata, as an element of one of these types establishes a relationship 4115
between its value and its context. 4116

Type structures:MetadataType 4117

 <xsd:complexType name="MetadataType" abstract="true"> 4118
 <xsd:attribute ref="s:id"/> 4119
 </xsd:complexType> 4120

Discussion 4121

 The MetadataType type is a base class for metadata type definition. This type 4122
provides only an ID, as the metadata may be referenced. It does not itself have 4123
metadata, and does not have link metadata. 4124

Type structures:ReferenceType 4125

 <xsd:complexType name="ReferenceType" final="#all"> 4126
 <xsd:attribute ref="s:id"/> 4127
 <xsd:attribute ref="s:ref"/> 4128
 <xsd:attribute ref="s:linkMetadata"/> 4129
 </xsd:complexType> 4130

Discussion 4131

 The ReferenceType type is the type of all reference elements within NIEM-4132
conformant schemas. This type provides a reference attribute, to reference an 4133
object defined elsewhere. It includes an ID, as the link established by a 4134
reference element may need to be identified, and it includes link metadata, as an 4135
element of this type establishes a relationship between its context and the 4136
referenced object. It does not contain metadata, as it does not itself establish the 4137
existence of an object; it relies on a definition located elsewhere. 4138

NIEM NDR Draft Version 1.2 Page 113 of 126
August 7, 2007

Full XML Schema for Structures Namespace 4139

<?xml version="1.0" encoding="UTF-8"?> 4140
<xsd:schema 4141
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema” 4142
 xmlns:i=”http://niem.gov/niem/appinfo/2.0” 4143
 xmlns:s=”http://niem.gov/niem/structures/2.0” 4144
 targetNamespace="http://niem.gov/niem/structures/2.0" 4145
 version="1"> 4146
 4147
 <xsd:import 4148
 schemaLocation="../../appinfo/2.0/appinfo.xsd" 4149
 namespace="http://niem.gov/niem/appinfo/2.0"/> 4150
 4151
 <xsd:annotation> 4152
 <xsd:appinfo> 4153
 <i:Resource i:name="Object"/> 4154
 </xsd:appinfo> 4155
 </xsd:annotation> 4156

 <xsd:annotation> 4157
 <xsd:appinfo> 4158
 <i:Resource i:name="Association"/> 4159
 </xsd:appinfo> 4160
 </xsd:annotation> 4161
 4162
 <xsd:attribute name="id" type="xsd:ID"/> 4163
 <xsd:attribute name="linkMetadata" type="xsd:IDREFS"/> 4164
 <xsd:attribute name="metadata" type="xsd:IDREFS"/> 4165
 <xsd:attribute name="ref" type="xsd:IDREF"/> 4166
 <xsd:attribute name="sequenceID" type="xsd:integer"/> 4167

 <xsd:attributeGroup name="SimpleObjectAttributeGroup"> 4168
 <xsd:attribute ref="s:id"/> 4169
 <xsd:attribute ref="s:metadata"/> 4170
 <xsd:attribute ref="s:linkMetadata"/> 4171
 </xsd:attributeGroup> 4172

 <xsd:element name="Augmentation" type="s:AugmentationType" 4173
 abstract="true"/> 4174
 <xsd:element name="Metadata" type="s:MetadataType" abstract="true"/> 4175
 4176
 <xsd:complexType name="AugmentationType" abstract="true"> 4177
 <xsd:attribute ref="s:id"/> 4178
 <xsd:attribute ref="s:metadata"/> 4179
 </xsd:complexType> 4180

 <xsd:complexType name="ComplexObjectType" abstract="true"> 4181
 <xsd:attribute ref="s:id"/> 4182
 <xsd:attribute ref="s:metadata"/> 4183
 <xsd:attribute ref="s:linkMetadata"/> 4184
 </xsd:complexType> 4185

 <xsd:complexType name="MetadataType" abstract="true"> 4186
 <xsd:attribute ref="s:id"/> 4187
 </xsd:complexType> 4188

 <xsd:complexType name="ReferenceType" final="#all"> 4189
 <xsd:attribute ref="s:id"/> 4190
 <xsd:attribute ref="s:ref"/> 4191
 <xsd:attribute ref="s:linkMetadata"/> 4192
 </xsd:complexType> 4193
 4194
</xsd:schema> 4195

 4196

http://www.w3.org/2001/XMLSchema�
http://niem.gov/niem/appinfo/2.0�
http://niem.gov/niem/structures/2.0�

NIEM NDR Draft Version 1.2 Page 114 of 126
August 7, 2007

NIEM 2.0 Reference Schemas – Directory Listing 4197
niem 4198
│ 4199
├───ansi-nist 4200
│ └───2.0 4201
│ ansi-nist.xsd 4202
│ 4203
├───ansi_d20 4204
│ └───2.0 4205
│ ansi_d20.xsd 4206
│ 4207
├───apco 4208
│ └───2.0 4209
│ apco.xsd 4210
│ 4211
├───appinfo 4212
│ └───2.0 4213
│ appinfo.xsd 4214
│ 4215
├───atf 4216
│ └───2.0 4217
│ atf.xsd 4218
│ 4219
├───census 4220
│ └───2.0 4221
│ census.xsd 4222
│ 4223
├───dea 4224
│ └───2.0 4225
│ dea.xsd 4226
│ 4227
├───dod_jcs-pub2.0-misc 4228
│ └───2.0 4229
│ dod_jcs-pub2.0-misc.xsd 4230
│ 4231
├───domains 4232
│ ├───emergencyManagement 4233
│ │ └───2.0 4234
│ │ emergencyManagement.xsd 4235
│ │ 4236
│ ├───immigration 4237
│ │ └───2.0 4238
│ │ immigration.xsd 4239
│ │ 4240
│ ├───infrastructureProtection 4241
│ │ └───2.0 4242
│ │ infrastructureProtection.xsd 4243
│ │ 4244
│ ├───intelligence 4245
│ │ └───2.0 4246
│ │ intelligence.xsd 4247
│ │ 4248
│ ├───internationalTrade 4249
│ │ └───2.0 4250
│ │ internationalTrade.xsd 4251

NIEM NDR Draft Version 1.2 Page 115 of 126
August 7, 2007

│ │ 4252
│ ├───jxdm 4253
│ │ └───4.0 4254
│ │ jxdm.xsd 4255
│ │ 4256
│ └───screening 4257
│ └───2.0 4258
│ screening.xsd 4259
│ 4260
├───edxl 4261
│ └───2.0 4262
│ edxl.xsd 4263
│ 4264
├───edxl-cap 4265
│ └───2.0 4266
│ edxl-cap.xsd 4267
│ 4268
├───edxl-de 4269
│ └───2.0 4270
│ edxl-de.xsd 4271
│ 4272
├───external 4273
│ ├───cap 4274
│ │ └───1.1 4275
│ │ cap.xsd 4276
│ │ 4277
│ ├───de 4278
│ │ └───1.0 4279
│ │ de.xsd 4280
│ │ 4281
│ ├───dhs-gmo 4282
│ │ └───AS 4283
│ │ ├───mobileObject 4284
│ │ │ └───1.0.0 4285
│ │ │ mobileObject.xsd 4286
│ │ │ 4287
│ │ └───multiModalRoute 4288
│ │ └───1.0.0 4289
│ │ multiModalRoute.xsd 4290
│ │ 4291
│ ├───iai-ifc 4292
│ │ └───rc2 4293
│ │ └───dhs-gmo 4294
│ │ └───1.0.0 4295
│ │ IFC2X2_FINAL.xsd 4296
│ │ 4297
│ ├───iso-10303-step 4298
│ │ └───2 4299
│ │ └───dhs-gmo 4300
│ │ └───1.0.0 4301
│ │ configuration.xsd 4302
│ │ ex.xsd 4303
│ │ 4304
│ ├───iso-19139-gmd 4305
│ │ └───draft-0.1 4306
│ │ ├───gco 4307
│ │ │ └───dhs-gmo 4308

NIEM NDR Draft Version 1.2 Page 116 of 126
August 7, 2007

│ │ │ └───1.0.0 4309
│ │ │ basicTypes.xsd 4310
│ │ │ gco.xsd 4311
│ │ │ gcoBase.xsd 4312
│ │ │ 4313
│ │ ├───gmd 4314
│ │ │ └───dhs-gmo 4315
│ │ │ └───1.0.0 4316
│ │ │ applicationSchema.xsd 4317
│ │ │ citation.xsd 4318
│ │ │ constraints.xsd 4319
│ │ │ content.xsd 4320
│ │ │ dataQuality.xsd 4321
│ │ │ distribution.xsd 4322
│ │ │ extent.xsd 4323
│ │ │ freeText.xsd 4324
│ │ │ gmd.xsd 4325
│ │ │ identification.xsd 4326
│ │ │ maintenance.xsd 4327
│ │ │ metadataApplication.xsd 4328
│ │ │ metadataEntity.xsd 4329
│ │ │ metadataExtension.xsd 4330
│ │ │ portrayalCatalogue.xsd 4331
│ │ │ referenceSystem.xsd 4332
│ │ │ spatialRepresentation.xsd 4333
│ │ │ 4334
│ │ ├───gmx 4335
│ │ │ └───dhs-gmo 4336
│ │ │ └───1.0.0 4337
│ │ │ catalogues.xsd 4338
│ │ │ codelistItem.xsd 4339
│ │ │ crsItem.xsd 4340
│ │ │ extendedTypes.xsd 4341
│ │ │ gmx.xsd 4342
│ │ │ gmxUsage.xsd 4343
│ │ │ uomItem.xsd 4344
│ │ │ 4345
│ │ ├───gsr 4346
│ │ │ └───dhs-gmo 4347
│ │ │ └───1.0.0 4348
│ │ │ gsr.xsd 4349
│ │ │ spatialReferencing.xsd 4350
│ │ │ 4351
│ │ ├───gss 4352
│ │ │ └───dhs-gmo 4353
│ │ │ └───1.0.0 4354
│ │ │ geometry.xsd 4355
│ │ │ gss.xsd 4356
│ │ │ 4357
│ │ └───gts 4358
│ │ └───dhs-gmo 4359
│ │ └───1.0.0 4360
│ │ gts.xsd 4361
│ │ temporalObjects.xsd 4362
│ │ 4363
│ ├───landxml 4364
│ │ └───1.1 4365

NIEM NDR Draft Version 1.2 Page 117 of 126
August 7, 2007

│ │ LandXML-1.1.xsd 4366
│ │ 4367
│ ├───ogc-context 4368
│ │ └───1.1.0 4369
│ │ └───dhs-gmo 4370
│ │ └───1.0.0 4371
│ │ context.xsd 4372
│ │ 4373
│ ├───ogc-filter 4374
│ │ └───1.1.0 4375
│ │ └───dhs-gmo 4376
│ │ └───1.0.0 4377
│ │ filter.xsd 4378
│ │ 4379
│ ├───ogc-gml 4380
│ │ └───3.1.1 4381
│ │ └───dhs-gmo 4382
│ │ └───1.0.0 4383
│ │ gml.xsd 4384
│ │ 4385
│ ├───ogc-observation 4386
│ │ └───draft-0.14.5 4387
│ │ ├───om 4388
│ │ │ └───dhs-gmo 4389
│ │ │ └───1.0.0 4390
│ │ │ commonObservation.xsd 4391
│ │ │ event.xsd 4392
│ │ │ observation.xsd 4393
│ │ │ observationSpecializations.xsd 4394
│ │ │ om.xsd 4395
│ │ │ procedure.xsd 4396
│ │ │ procedureSpecializations.xsd 4397
│ │ │ 4398
│ │ ├───st 4399
│ │ │ └───dhs-gmo 4400
│ │ │ └───1.0.0 4401
│ │ │ simpleTypeDerivation.xsd 4402
│ │ │ 4403
│ │ └───swe 4404
│ │ └───dhs-gmo 4405
│ │ └───1.0.0 4406
│ │ discreteCoverage.xsd 4407
│ │ phenomenon.xsd 4408
│ │ record.xsd 4409
│ │ recordType.xsd 4410
│ │ swe.xsd 4411
│ │ SWE_basicTypes.xsd 4412
│ │ temporalAggregates.xsd 4413
│ │ 4414
│ ├───ogc-openls 4415
│ │ └───1.1.0 4416
│ │ └───dhs-gmo 4417
│ │ └───1.0.0 4418
│ │ ols.xsd 4419
│ │ 4420
│ ├───ogc-ows 4421
│ │ └───1.0.0 4422

NIEM NDR Draft Version 1.2 Page 118 of 126
August 7, 2007

│ │ └───dhs-gmo 4423
│ │ └───1.0.0 4424
│ │ ows.xsd 4425
│ │ 4426
│ ├───ogc-sld 4427
│ │ └───1.0.20 4428
│ │ └───dhs-gmo 4429
│ │ └───1.0.0 4430
│ │ sld.xsd 4431
│ │ 4432
│ ├───ogc-swe-common 4433
│ │ └───1.0.0 4434
│ │ └───dhs-gmo 4435
│ │ └───1.0.0 4436
│ │ data.xsd 4437
│ │ parameters.xsd 4438
│ │ positionData.xsd 4439
│ │ sweCommon.xsd 4440
│ │ 4441
│ ├───ogc-wfs 4442
│ │ └───1.1.0 4443
│ │ └───dhs-gmo 4444
│ │ └───1.0.0 4445
│ │ wfs.xsd 4446
│ │ 4447
│ ├───urisa-street-address 4448
│ │ └───draft-0.2.0 4449
│ │ └───dhs-gmo 4450
│ │ └───1.0.0 4451
│ │ StreetAddressDataStandard.xsd 4452
│ │ 4453
│ ├───w3c-xlink 4454
│ │ └───1.0 4455
│ │ └───dhs-gmo 4456
│ │ └───1.0.0 4457
│ │ xlinks.xsd 4458
│ │ 4459
│ └───w3c-xml 4460
│ └───1998 4461
│ xml.xsd 4462
│ 4463
├───fbi 4464
│ └───2.0 4465
│ fbi.xsd 4466
│ 4467
├───fips_10-4 4468
│ └───2.0 4469
│ fips_10-4.xsd 4470
│ 4471
├───fips_5-2 4472
│ └───2.0 4473
│ fips_5-2.xsd 4474
│ 4475
├───fips_6-4 4476
│ └───2.0 4477
│ fips_6-4.xsd 4478
│ 4479

NIEM NDR Draft Version 1.2 Page 119 of 126
August 7, 2007

├───geospatial 4480
│ └───2.0 4481
│ geospatial.xsd 4482
│ 4483
├───have 4484
│ └───2.0 4485
│ have.xsd 4486
│ 4487
├───hazmat 4488
│ └───2.0 4489
│ hazmat.xsd 4490
│ 4491
├───iso_3166 4492
│ └───2.0 4493
│ iso_3166.xsd 4494
│ 4495
├───iso_4217 4496
│ └───2.0 4497
│ iso_4217.xsd 4498
│ 4499
├───iso_639-3 4500
│ └───2.0 4501
│ iso_639-3.xsd 4502
│ 4503
├───itis 4504
│ └───2.0 4505
│ itis.xsd 4506
│ 4507
├───lasd 4508
│ └───2.0 4509
│ lasd.xsd 4510
│ 4511
├───mmucc_2 4512
│ └───2.0 4513
│ mmucc_2.xsd 4514
│ 4515
├───mn_offense 4516
│ └───2.0 4517
│ mn_offense.xsd 4518
│ 4519
├───nga 4520
│ └───2.0 4521
│ nga.xsd 4522
│ 4523
├───niem-core 4524
│ └───2.0 4525
│ niem-core.xsd 4526
│ 4527
├───nlets 4528
│ └───2.0 4529
│ nlets.xsd 4530
│ 4531
├───nonauthoritative-code 4532
│ └───2.0 4533
│ nonauthoritative-code.xsd 4534
│ 4535
├───post-canada 4536

NIEM NDR Draft Version 1.2 Page 120 of 126
August 7, 2007

│ └───2.0 4537
│ post-canada.xsd 4538
│ 4539
├───proxy 4540
│ └───xsd 4541
│ └───2.0 4542
│ xsd.xsd 4543
│ 4544
├───sar 4545
│ └───2.0 4546
│ sar.xsd 4547
│ 4548
├───structures 4549
│ └───2.0 4550
│ structures.xsd 4551
│ 4552
├───twpdes 4553
│ └───2.0 4554
│ twpdes.xsd 4555
│ 4556
├───ucr 4557
│ └───2.0 4558
│ ucr.xsd 4559
│ 4560
├───unece_rec20-misc 4561
│ └───2.0 4562
│ unece_rec20-misc.xsd 4563
│ 4564
├───usps_states 4565
│ └───2.0 4566
│ usps_states.xsd 4567
│ 4568
└───ut_offender-tracking-misc 4569
 └───2.0 4570
 ut_offender-tracking-misc.xsd 4571
 4572
 4573

 4574

NIEM NDR Draft Version 1.2 Page 121 of 126
August 7, 2007

Appendix I. References 4575

[ARCH]: The NIEM Reference Architecture. Not yet available. 4576

[CRM]: The Federal Enterprise Architecture Consolidated Reference Model. Available 4577
from 4578
http://www.whitehouse.gov/omb/egov/documents/FEA_CRM_v21_Final4579
_Dec_2006.pdf 4580

[IEPD]: Requirements for a National Information Exchange Model (NIEM) Information 4581
Exchange Package Documentation (IEPD) Specification, Version 2.1, June 2006. 4582
Available from 4583
http://www.niem.gov/files/NIEM_IEPD_Requirements_v2_1.txt 4584

[ISO 11179 Part 4]: ISO/IEC 11179-4:2004, Information technology -- Metadata registries 4585
(MDR) -- Part 4: Formulation of data definitions. Available from 4586
http://standards.iso.org/ittf/PubliclyAvailableStandards/c03534587
46_ISO_IEC_11179-4_2004(E).zip 4588

[ISO 11179 Part 5]: ISO/IEC 11179-5:2005, Information technology -- Metadata registries 4589
(MDR) -- Part 5: Naming and identification principles. Available from 4590
http://standards.iso.org/ittf/PubliclyAvailableStandards/c03534591
47_ISO_IEC_11179-5_2005(E).zip 4592

[OED]: Oxford English Dictionary, Second Edition, 1989. Available from 4593
http://dictionary.oed.com/ 4594

[OJP]: OJP Information Technology Website.Available from 4595
http://www.it.ojp.gov/jxdm. 4596

[RDFConcepts]: Resource Description Framework (RDF): Concepts and Abstract 4597
Syntax, W3C Recommendation 10 February 2004. Available from 4598
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ 4599

RDF data model is described at #section-data-model 4600

[RFC2119]: Bradner, S. Key words for use in RFCs to Indicate Requirement Levels, 4601
IETF RFC 2119, March 1997. Available from 4602
http://www.ietf.org/rfc/rfc2119.txt 4603

[RFC3986]: Berners-Lee, T., et al: Uniform Resource Identifier (URI): Generic Syntax, 4604
Request for Comments 3986, January 2005. Available from 4605
http://www.ietf.org/rfc/rfc3986.txt 4606

[SchemaForXMLSchema]: XML Schema schema for XML Schemas: Part 1: Structures. 4607
Available from http://www.w3.org/2001/XMLSchema.xsd 4608

[SchemaforXMLSchemaInstance]: XML Schema instance namespace. Available from 4609
http://www.w3.org/2001/XMLSchema-instance.xsd 4610

[XML]: Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C Recommendation 4611
16 August 2006. Available from http://www.w3.org/TR/2006/REC-xml-4612
20060816/ 4613

EBNF notation is described at #sec-notation. 4614

IDREF constraint is described at #idref 4615

[XML-ID]: xml:id Version 1.0, W3C Proposed Recommendation 12 July 2005. Available 4616
from http://www.w3.org/TR/2005/PR-xml-id-20050712/. 4617

[XMLInfoSet]: XML Information Set (Second Edition), W3C Recommendation 4 4618
February 2004. Available from http://www.w3.org/TR/2004/REC-xml-4619
infoset-20040204/ 4620

http://www.whitehouse.gov/omb/egov/documents/FEA_CRM_v21_Final_Dec_2006.pdf�
http://www.whitehouse.gov/omb/egov/documents/FEA_CRM_v21_Final_Dec_2006.pdf�
http://www.whitehouse.gov/omb/egov/documents/FEA_CRM_v21_Final_Dec_2006.pdf�
http://www.w3.org/2001/XMLSchema.xsd�

NIEM NDR Draft Version 1.2 Page 122 of 126
August 7, 2007

[XMLNamespaces]: Namespaces in XML, World Wide Web Consortium 16 August 4621
2006. Available from http://www.w3.org/TR/2006/REC-xml-names-4622
20060816. 4623

NCName is described at #NT-NCName 4624

[XMLNamespacesErrata]: Namespaces in XML Errata, 6 December 2002. Available 4625
from http://www.w3.org/XML/xml-names-19990114-errata 4626

[XMLSchemaDatatypes]: XML Schema Part 2: Datatypes Second Edition, W3C 4627
Recommendation 28 October 2004. Available at 4628
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/ 4629

[XMLSchemaStructures]: XML Schema Part 1: Structures Second Edition, W3C 4630
Recommendation 28 October 2004. Available from 4631
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 4632

NIEM NDR Draft Version 1.2 Page 123 of 126
August 7, 2007

Appendix J. Glossary 4633

This glossary is informative only. It collects together all the definitions which appear in 4634
the preceding document, for the benefit of those reading a hardcopy of this document. 4635

adapter type 4636

An adapter type is a NIEM-conformant type that adapts external components for use 4637
within NIEM. An adapter type creates a new class of object that embodies a single 4638
concept composed of external components. An adapter type is defined by a NIEM-4639
conformant schema. 4640

application information 4641

A component is said to have application information of some element E when the root 4642
element that defines the component has an immediate child element xsd:annotation, 4643
which has an immediate child element xsd:appinfo, which has as an immediate child 4644
the element E. 4645

appinfo namespace 4646

The appinfo namespace is the namespace represented by the URI 4647
"http://niem.gov/niem/appinfo/2.0". 4648

association 4649

In a NIEM-conformant schema, an association is an element whose type is a 4650
association type. 4651

association type 4652

In a NIEM-conformant schema, an association type is a type which establishes a 4653
relationship between objects, along with the properties of that relationship. An 4654
association type provides a structure which does not establish existence of an object, but 4655
instead specifies relationships between objects. 4656

augmentation 4657

An augmentation of a NIEM-conformant object type is a block of additional data added 4658
to an object type, in order to carry additional data beyond that of the original object 4659
definition. 4660

augmentation type 4661

An augmentation type is a complex type which provides a reusable block of data which 4662
may be added to object types or association types. 4663

code type 4664

A code type is a simple type schema component definition which contains multiple 4665
xsd:enumeration facets. 4666

definition 4667

The definition of a documented component is the content of the occurrence of an 4668
element xsd:documentation that is an immediate child of the occurrence of an 4669
element xsd:annotation. That element xsd:annotation is itself an immediate 4670
child of the element that defines the component. 4671

deprecated component 4672

In a particular NIEM-conformant namespace, a deprecated component is one whose 4673
use is not recommended, yet which is maintained in the schema for compatibility with 4674
previous versions of the namespace. 4675

NIEM NDR Draft Version 1.2 Page 124 of 126
August 7, 2007

documented component 4676

In a NIEM-conformant schema, a documented component is an XML Schema 4677
component that is required to have associated documentation. These schema 4678
components are required to have a textual definition for the component to be well-4679
understood. Schemas that do not document their components accordingly are not NIEM-4680
conformant. 4681

external schema 4682

An external schema is any non-supporting schema that is not NIEM-conformant. 4683

metadata element 4684

Within a NIEM-conformant schema, a metadata element is an element whose type is a 4685
metadata type. There are specific limitations on the meaning of a metadata element in 4686
an instance; it does not establish existence of an object, nor is it a property of its 4687
containing object. 4688

metadata type 4689

A metadata type describes data about data, that is, information which is not descriptive 4690
of objects and their relationships, but is descriptive of the data itself. It is useful to 4691
provide a general mechanism for data about data. This provides required flexibility to 4692
precisely represent information. 4693

NIEM-conformant document 4694

A NIEM-conformant document is an XML information set whose document element is 4695
defined by a NIEM-conformant schema, and which follows the rules for conformant 4696
element information items as specified by this document. 4697

NIEM-conformant element instance 4698

A NIEM-conformant element instance is an XML information item which is defined by a 4699
NIEM-conformant schema, and which follows the rules for conformant instance data as 4700
specified by this document. 4701

NIEM-conformant schema 4702

A NIEM-conformant schema is an XML document which follows the rules for NIEM-4703
conformant schemas, as provided by this document. Any schema that follows all of the 4704
rules may be called NIEM-conformant. 4705

object type 4706

In a NIEM-conformant schema, an object type is a complex type definition, an instance 4707
of which asserts the existence of an object. An object type represents some kind of 4708
object: a thing with its own lifespan that has some existence. The object may or may not 4709
be a physical object. It may be a conceptual object. 4710

reference element 4711

A reference element is an element that refers to its value by a reference attribute, 4712
instead of carrying it as content. 4713

RoleOf element 4714

In a NIEM-conformant schema, a RoleOf element is a reference element whose type is 4715
the base type of the role. 4716

role type 4717

A role type is a type that represents a particular function, purpose, usage, or role of an 4718
object. 4719

NIEM NDR Draft Version 1.2 Page 125 of 126
August 7, 2007

structures namespace 4720

The structures namespace is the namespace represented by the URI 4721
"http://niem.gov/niem/structures/2.0". 4722

 4723

 4724

NIEM NDR Draft Version 1.2 Page 126 of 126
August 7, 2007

Appendix K. Notices 4725

This document and the information contained herein is provided on an “AS IS” basis and 4726
the authors DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT 4727
NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN 4728
WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 4729
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 4730

